
Hildegund C J Ertl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296364/publications.pdf Version: 2024-02-01

HILDECLIND C | EPTL

#	Article	IF	CITATIONS
1	The Effect of Rapamycin and Ibrutinib on Antibody Responses to Adeno-Associated Virus Vector-Mediated Gene Transfer. Human Gene Therapy, 2022, 33, 614-624.	2.7	16
2	Immunological biomarker discovery in cure regimens for chronic hepatitis B virus infection. Journal of Hepatology, 2022, 77, 525-538.	3.7	16
3	A One Medicine Mission for an Effective Rabies Therapy. Frontiers in Veterinary Science, 2022, 9, 867382.	2.2	4
4	COVID-19 Vaccines Based on Adenovirus Vectors. Trends in Biochemical Sciences, 2021, 46, 429-430.	7.5	24
5	Vaccine-induced ICOS+CD38+ circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways. Cell Reports Medicine, 2021, 2, 100262.	6.5	26
6	PPARα Agonist Fenofibrate Enhances Cancer Vaccine Efficacy. Cancer Research, 2021, 81, 4431-4440.	0.9	17
7	Hepatitis B virus polymerase-specific T cell epitopes shift in a mouse model of chronic infection. Virology Journal, 2021, 18, 242.	3.4	2
8	The Effect of CpG Sequences on Capsid-Specific CD8+ T Cell Responses to AAV Vector Gene Transfer. Molecular Therapy, 2020, 28, 771-783.	8.2	44
9	Towards rabies elimination in the Asia-Pacific region: From theory to practice. Biologicals, 2020, 64, 83-95.	1.4	25
10	Novel Rabies Vaccines. , 2020, , 155-180.		0
11	New human rabies vaccines in the pipeline. Vaccine, 2019, 37, A140-A145.	3.8	22
12	New Rabies Vaccines for Use in Humans. Vaccines, 2019, 7, 54.	4.4	32
13	Avoiding preventable deaths: The scourge of counterfeit rabies vaccines. Vaccine, 2019, 37, 2285-2287.	3.8	22
14	Prime-boost vaccination with recombinant protein and adenovirus-vector expressing Plasmodium vivax circumsporozoite protein (CSP) partially protects mice against Pb/Pv sporozoite challenge. Scientific Reports, 2018, 8, 1118.	3.3	31
15	Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immunity and Ageing, 2018, 15, 19.	4.2	23
16	Additional Progress in the Development and Application of a Direct, Rapid Immunohistochemical Test for Rabies Diagnosis. Veterinary Sciences, 2018, 5, 59.	1.7	17
17	Safety and immunogenicity of a potential checkpoint blockade vaccine for canine melanoma. Cancer Immunology, Immunotherapy, 2018, 67, 1533-1544.	4.2	7
18	Correlates of Protection Against SIVmac251 Infection in Rhesus Macaques Immunized With Chimpanzee-Derived Adenovirus Vectors. EBioMedicine, 2018, 31, 25-35.	6.1	13

#	Article	IF	CITATIONS
19	Rabies Vaccines. , 2018, , 918-942.e12.		8
20	The effect of timing of influenza vaccination and sample collection on antibody titers and responses in the aged. Vaccine, 2017, 35, 3700-3708.	3.8	30
21	Enhancing CD8+ T Cell Fatty Acid Catabolism withinÂa Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell, 2017, 32, 377-391.e9.	16.8	419
22	Pre-exposure rabies prophylaxis: a systematic review. Bulletin of the World Health Organization, 2017, 95, 210-219C.	3.3	89
23	Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget, 2016, 7, 23282-23299.	1.8	81
24	Vaccine Design: Replication-Defective Adenovirus Vectors. Methods in Molecular Biology, 2016, 1404, 329-349.	0.9	5
25	A PartialE3Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products. Human Gene Therapy Methods, 2016, 27, 187-196.	2.1	3
26	Rapid, Efficient, and Modular Generation of Adenoviral Vectors via Isothermal Assembly. Current Protocols in Molecular Biology, 2016, 113, 16.26.1-16.26.18.	2.9	12
27	Antibody responses to prime–boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140. Aids, 2016, 30, 2405-2414.	2.2	14
28	Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood. Oncotarget, 2016, 7, 62898-62911.	1.8	56
29	AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15029.	4.1	59
30	Activated CD4 ⁺ CCR5 ⁺ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 518-523.	7.1	88
31	Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer. Journal of Innate Immunity, 2015, 7, 302-314.	3.8	62
32	BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. Oncotarget, 2015, 6, 19445-19455.	1.8	16
33	Survivin-targeting Artificial MicroRNAs Mediated by Adenovirus Suppress Tumor Activity in Cancer Cells and Xenograft Models. Molecular Therapy - Nucleic Acids, 2014, 3, e208.	5.1	22
34	CD8+ T Cell Recognition of Epitopes Within the Capsid of Adeno-associated Virus 8–based Gene Transfer Vectors Depends on Vectors' Genome. Molecular Therapy, 2014, 22, 42-51.	8.2	30
35	The Effect of Adjuvanting Cancer Vaccines with Herpes Simplex Virus Glycoprotein D on Melanoma-Driven CD8+ T Cell Exhaustion. Journal of Immunology, 2014, 193, 1836-1846.	0.8	20
36	Enhancement of recombinant adenovirus vaccine-induced primary but not secondary systemic and mucosal immune responses by all-trans retinoic acid. Vaccine, 2014, 32, 3386-3392.	3.8	8

#	Article	IF	CITATIONS
37	Immunogenicity of a Prime-Boost Vaccine Containing the Circumsporozoite Proteins of Plasmodium vivax in Rodents. Infection and Immunity, 2014, 82, 793-807.	2.2	25
38	Construction and Characterization of E1- and E3-Deleted Adenovirus Vectors Expressing Two Antigens from Two Separate Expression Cassettes. Human Gene Therapy, 2014, 25, 328-338.	2.7	7
39	Circulating CXCR5+PD-1+ Response Predicts Influenza Vaccine Antibody Responses in Young Adults but not Elderly Adults. Journal of Immunology, 2014, 193, 3528-3537.	0.8	145
40	The effect of adenovirus-specific antibodies on adenoviral vector-induced, transgene product-specific T cell responses. Journal of Leukocyte Biology, 2014, 96, 821-831.	3.3	15
41	Hexon-modified Recombinant E1-deleted Adenovirus Vectors as Dual Specificity Vaccine Carriers for Influenza Virus. Molecular Therapy, 2013, 21, 696-706.	8.2	22
42	Influenza Virus Specific CD8+T Cells Exacerbate Infection Following High Dose Influenza Challenge of Aged Mice. BioMed Research International, 2013, 2013, 1-14.	1.9	14
43	B cell responses to the 2011/12-influenza vaccine in the aged. Aging, 2013, 5, 209-226.	3.1	12
44	Self-complementary AAVs Induce More Potent Transgene Product-specific Immune Responses Compared to a Single-stranded Genome. Molecular Therapy, 2012, 20, 572-579.	8.2	45
45	Correlates of relative resistance against low-dose rectal simian immunodeficiency virus challenges in peripheral blood mononuclear cells of vaccinated rhesus macaques. Journal of Leukocyte Biology, 2012, 93, 437-448.	3.3	6
46	The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9–dependent innate immune responses in the liver. Blood, 2011, 117, 6459-6468.	1.4	187
47	Capsid-specific T-cell Responses to Natural Infections With Adeno-associated Viruses in Humans Differ From Those of Nonhuman Primates. Molecular Therapy, 2011, 19, 2021-2030.	8.2	68
48	Effect of Preexisting Immunity to Adenovirus on Transgene Product-Specific Genital T Cell Responses on Vaccination of Mice With a Homologous Vector. Journal of Infectious Diseases, 2011, 203, 1073-1081.	4.0	9
49	Robust genital gagâ€specific CD8 ⁺ Tâ€cell responses in mice upon intramuscular immunization with simian adenoviral vectors expressing HIVâ€1â€gag. European Journal of Immunology, 2010, 40, 3426-3438.	2.9	12
50	Targeting inhibitory pathways in cancer immunotherapy. Current Opinion in Immunology, 2010, 22, 385-390.	5.5	28
51	An efficient method of directly cloning chimpanzee adenovirus as a vaccine vector. Nature Protocols, 2010, 5, 1775-1785.	12.0	58
52	Augmentation of Primary Influenza A Virus-Specific CD8+ T Cell Responses in Aged Mice through Blockade of an Immunoinhibitory Pathway. Journal of Immunology, 2010, 184, 5475-5484.	0.8	25
53	A Universal Influenza A Vaccine Based on Adenovirus Expressing Matrix-2 Ectodomain and Nucleoprotein Protects Mice From Lethal Challenge. Molecular Therapy, 2010, 18, 2182-2188.	8.2	56
54	Simian recombinant adenovirus delivered by the mucosal route modulates Î ³ δT cells from murine genital tract. Vaccine, 2010, 28, 4600-4608.	3.8	8

#	Article	IF	CITATIONS
55	Obstacles to the successful development of an efficacious T cell-inducing HIV-1 vaccine. Journal of Leukocyte Biology, 2009, 86, 779-793.	3.3	14
56	Potentiating vaccine immunogenicity by manipulating the HVEM/BTLA pathway and other co-stimulatory and co-inhibitory signals of the immune system. Hum Vaccin, 2009, 5, 6-14.	2.4	10
57	A Preclinical Animal Model to Assess the Effect of Pre-existing Immunity on AAV-mediated Gene Transfer. Molecular Therapy, 2009, 17, 1215-1224.	8.2	41
58	Novel Vaccines to Human Rabies. PLoS Neglected Tropical Diseases, 2009, 3, e515.	3.0	63
59	New Insights on Adenovirus as Vaccine Vectors. Molecular Therapy, 2009, 17, 1333-1339.	8.2	229
60	Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors. Vaccine, 2009, 27, 5837-5845.	3.8	44
61	Singleâ€dose immunogenicity and protective efficacy of simian adenoviral vectors against <i>Plasmodium berghei</i> . European Journal of Immunology, 2008, 38, 732-741.	2.9	95
62	Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors. Journal of Virology, 2007, 81, 6594-6604.	3.4	172
63	A CD46-binding Chimpanzee Adenovirus Vector as a Vaccine Carrier. Molecular Therapy, 2007, 15, 608-617.	8.2	34
64	Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood, 2007, 110, 1916-1923.	1.4	190
65	CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Medicine, 2007, 13, 419-422.	30.7	629
66	Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology, 2007, 367, 156-167.	2.4	53
67	Recombinant adeno-associated virus vectors induce functionally impaired transgene product–specific CD8+ T cells in mice. Journal of Clinical Investigation, 2007, 117, 3958-70.	8.2	76
68	Chimpanzee Adenovirus Antibodies in Humans, Sub-Saharan Africa. Emerging Infectious Diseases, 2006, 12, 1596-1599.	4.3	157
69	Random migration precedes stable target cell interactions of tumor-infiltrating T cells. Journal of Experimental Medicine, 2006, 203, 2749-2761.	8.5	201
70	A Chimpanzee-Origin Adenovirus Vector Expressing the Rabies Virus Glycoprotein as an Oral Vaccine against Inhalation Infection with Rabies Virus. Molecular Therapy, 2006, 14, 662-672.	8.2	53
71	Dendritic Cell Maturation, but Not CD8+T Cell Induction, Is Dependent on Type I IFN Signaling during Vaccination with Adenovirus Vectors. Journal of Immunology, 2005, 175, 6032-6041.	0.8	67
72	Adenoviruses as vaccine vectors. Molecular Therapy, 2004, 10, 616-629.	8.2	564

#	Article	IF	CITATIONS
73	Management of Rabies in Humans. Clinical Infectious Diseases, 2003, 36, 60-63.	5.8	217
74	Induction of CD8+ T Cells to an HIV-1 Antigen through a Prime Boost Regimen with Heterologous E1-Deleted Adenoviral Vaccine Carriers. Journal of Immunology, 2003, 171, 6774-6779.	0.8	107
75	Mucosally Delivered E1-Deleted Adenoviral Vaccine Carriers Induce Transgene Product-Specific Antibody Responses in Neonatal Mice. Journal of Immunology, 2003, 171, 4287-4293.	0.8	34
76	A Simian Replication-Defective Adenoviral Recombinant Vaccine to HIV-1 Gag. Journal of Immunology, 2003, 170, 1416-1422.	0.8	193
77	Novel, Chimpanzee Serotype 68-Based Adenoviral Vaccine Carrier for Induction of Antibodies to a Transgene Product. Journal of Virology, 2002, 76, 2667-2675.	3.4	186
78	Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor. Journal of General Virology, 2002, 83, 151-155.	2.9	57
79	Replication-Defective Vector Based on a Chimpanzee Adenovirus. Journal of Virology, 2001, 75, 11603-11613.	3.4	253
80	T helper cell epitope of rabies virus nucleoprotein defined by tri- and tetrapeptides. European Journal of Immunology, 1991, 21, 1-10.	2.9	51