Pablo Escriba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2296209/publications.pdf

Version: 2024-02-01

87888 91884 5,272 108 38 69 citations h-index g-index papers 115 115 115 6071 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multifaceted Analyses of Isolated Mitochondria Establish the Anticancer Drug 2-Hydroxyoleic Acid as an Inhibitor of Substrate Oxidation and an Activator of Complex IV-Dependent State 3 Respiration. Cells, 2022, 11, 578.	4.1	2
2	The Novel Antitumor Compound HCA Promotes Glioma Cell Death by Inducing Endoplasmic Reticulum Stress and Autophagy. Cancers, 2021, 13, 4290.	3.7	6
3	Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. Membranes, 2021, 11, 944.	3.0	9
4	Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. Membranes, 2021, 11, 919.	3.0	12
5	Tri-2-Hydroxyarachidonein Induces Cytocidal Autophagy in Pancreatic Ductal Adenocarcinoma Cancer Cell Models. Frontiers in Physiology, 2021, 12, 782525.	2.8	1
6	Editorial: Using Small Molecules to Treat Macromolecule Storage Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 623613.	3.7	2
7	The Implications for Cells of the Lipid Switches Driven by Protein–Membrane Interactions and the Development of Membrane Lipid Therapy. International Journal of Molecular Sciences, 2020, 21, 2322.	4.1	16
8	2-Hydroxy-Docosahexaenoic Acid Is Converted Into Heneicosapentaenoic Acid via α-Oxidation: Implications for Alzheimer's Disease Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 164.	3.7	6
9	Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International Journal of Molecular Sciences, 2019, 20, 2167.	4.1	472
10	The Opposing Contribution of SMS1 and SMS2 to Glioma Progression and Their Value in the Therapeutic Response to 20HOA. Cancers, 2019, 11, 88.	3.7	21
11	Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity. Bioscience Reports, 2019, 39, .	2.4	15
12	The triacylglycerol, hydroxytriolein, inhibits triple negative mammary breast cancer cell proliferation through a mechanism dependent on dihydroceramide and Akt. Oncotarget, 2019, 10, 2486-2507.	1.8	15
13	Guaiacol as a drug candidate for treating adult polyglucosan body disease. JCI Insight, 2018, 3, .	5.0	33
14	Role of the C-terminal basic amino acids and the lipid anchor of the GÎ32 protein in membrane interactions and cell localization. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1536-1547.	2.6	15
15	G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1526-1535.	2.6	23
16	Membrane-lipid therapy: A historical perspective of membrane-targeted therapies â€" From lipid bilayer structure to the pathophysiological regulation of cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1493-1506.	2.6	65
17	The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1596-1603.	2.6	16
18	Triacylglycerol mimetics regulate membrane interactions of glycogen branching enzyme: implications for therapy. Journal of Lipid Research, 2017, 58, 1598-1612.	4.2	10

#	Article	IF	CITATIONS
19	Final report of a phase I study of 2-hydroxyoleic acid (20HOA) a novel sphingomyelin synthase activator in patients (pt) with advanced solid tumors (AST) including recurrent high grade gliomas (rHGG) Journal of Clinical Oncology, 2017, 35, 2554-2554.	1.6	7
20	Treatment with albumin-hydroxyoleic acid complex restores sensorimotor function in rats with spinal cord injury: Efficacy and gene expression regulation. PLoS ONE, 2017, 12, e0189151.	2.5	7
21	2-Hydroxyoleic Acid., 2017,, 2173-2175.		0
22	Brain Lipids in the Pathophysiology and Treatment of Alzheimer's Disease. , 2016, , .		4
23	Optimized Protocol To Analyze Changes in the Lipidome of Xenografts after Treatment with 2-Hydroxyoleic Acid. Analytical Chemistry, 2016, 88, 1022-1029.	6.5	9
24	Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 244-254.	2.8	26
25	Polyunsaturated Fatty Acids. , 2016, , 3665-3671.		0
26	Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Human Molecular Genetics, 2015, 24, 5667-5676.	2.9	58
27	The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase C <i>α</i> – and Extracellular Signal-Regulated Kinase 1/2–Dependent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 213-224.	2.5	15
28	Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Progress in Lipid Research, 2015, 59, 38-53.	11.6	181
29	The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer's disease. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 712-724.	4.9	17
30	G protein–membrane interactions I: Gαi1 myristoyl and palmitoyl modifications in protein–lipid interactions and its implications in membrane microdomain localization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1511-1520.	2.4	24
31	Membrane-Lipid Therapy. , 2015, , 2733-2739.		0
32	Regulation of the cancer cell membrane lipid composition by NaCHOleate. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1619-1627.	2.6	73
33	Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer's disease. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1680-1692.	2.6	50
34	The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1518-1528.	2.6	246
35	Changes in Membrane Organization upon Spontaneous Insertion of 2-Hydroxylated Unsaturated Fatty Acids in the Lipid Bilayer. Langmuir, 2014, 30, 2117-2128.	3.5	26
36	Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1628-1637.	2.6	29

#	Article	lF	Citations
37	Analysis of the Lipidome of Xenografts Using MALDI-IMS and UHPLC-ESI-QTOF. Journal of the American Society for Mass Spectrometry, 2014, 25, 1237-1246.	2.8	20
38	Membrane structure and function: Relevance of lipid and protein structures in cellular physiology, pathology and therapy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1449-1450.	2.6	24
39	2-Hydroxyoleic Acid., 2014, , 1-3.		0
40	Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2553-2563.	2.6	43
41	Cognitive recovery and restoration of cell proliferation in the dentate gyrus in the 5XFAD transgenic mice model of Alzheimer's disease following 2-hydroxy-DHA treatment. Biogerontology, 2013, 14, 763-775.	3.9	47
42	The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1405-1413.	2.6	39
43	Sustained activation of sphingomyelin synthase by 2-hydroxyoleic acid induces sphingolipidosis in tumor cells. Journal of Lipid Research, 2013, 54, 1457-1465.	4.2	14
44	2-Hydroxy Arachidonic Acid: A New Non-Steroidal Anti-Inflammatory Drug. PLoS ONE, 2013, 8, e72052.	2.5	30
45	2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8489-8494.	7.1	95
46	Normalization of sphingomyelin levels by 2-hydroxyoleic acid induces autophagic cell death of SF767 cancer cells. Autophagy, 2012, 8, 1542-1544.	9.1	14
47	2-Hydroxyoleic Acid Induces ER Stress and Autophagy in Various Human Glioma Cell Lines. PLoS ONE, 2012, 7, e48235.	2.5	37
48	Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19569-19574.	7.1	142
49	Membrane-Lipid Therapy., 2011,, 2229-2233.		0
50	Minerval induces apoptosis in Jurkat and other cancer cells. Journal of Cellular and Molecular Medicine, 2010, 14, 659-670.	3.6	47
51	Interactions of fatty acids with phosphatidylethanolamine membranes: X-ray diffraction and molecular dynamics studies. Journal of Lipid Research, 2010, 51, 1113-1124.	4.2	22
52	Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13754-13758.	7.1	40
53	Ternary copper(II) complexes with hippurate derivatives and 1,10-phenanthroline: Synthesis and biological activity. Inorganica Chimica Acta, 2009, 362, 4744-4753.	2.4	10
54	Interaction of transmembrane-spanning segments of the $\hat{l}\pm2$ -adrenergic receptor with model membranes. Molecular Membrane Biology, 2009, 26, 265-278.	2.0	4

#	Article	IF	Citations
55	Membranes: a meeting point for lipids, proteins and therapies. Journal of Cellular and Molecular Medicine, 2008, 12, 829-875.	3.6	348
56	Effects of 2-hydroxyoleic acid on the structural properties of biological and model plasma membranes. Molecular Membrane Biology, 2008, 25, 46-57.	2.0	21
57	Membrane interactions of G proteins and other related proteins. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1640-1652.	2.6	101
58	2-Hydroxyoleic acid affects cardiomyocyte [Ca ²⁺] _i transient and contractility in a region-dependent manner. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1948-H1955.	3.2	12
59	Consumption of Virgin Olive Oil Influences Membrane Lipid Composition and Regulates Intracellular Signaling in Elderly Adults With Type 2 Diabetes Mellitus. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 256-263.	3.6	32
60	Lipid–protein interactions in GPCR-associated signaling. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 836-852.	2.6	157
61	G protein-coupled receptor systems and their lipid environment in health disorders during aging. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 964-975.	2.6	78
62	Interaction of the C-Terminal Region of the $G\hat{l}^3$ Protein with Model Membranes. Biophysical Journal, 2007, 93, 2530-2541.	0.5	18
63	Synthesis and mass spectroscopy kinetics of a novel ternary copper(II) complex with cytotoxic activity against cancer cells. Journal of Inorganic Biochemistry, 2007, 101, 649-659.	3.5	69
64	Effects of fatty acids on the structural properties of biological and model membranes. Chemistry and Physics of Lipids, 2007, 149, S39.	3.2	0
65	Membrane-lipid therapy: a new approach in molecular medicine. Trends in Molecular Medicine, 2006, 12, 34-43.	6.7	188
66	Antihypertensive action of 2-hydroxyoleic acid in SHRs via modulation of the protein kinase A pathway and Rho kinase. Journal of Lipid Research, 2006, 47, 1762-1770.	4.2	36
67	The Repression of E2F-1 Is Critical for the Activity of Minerval against Cancer. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 466-474.	2.5	38
68	Membrane Structure Modulation, Protein Kinase Cα Activation, and Anticancer Activity of Minerval. Molecular Pharmacology, 2005, 67, 531-540.	2.3	74
69	Influence of the Membrane Lipid Structure on Signal Processing via G Protein-Coupled Receptors. Molecular Pharmacology, 2005, 68, 210-217.	2.3	80
70	The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Progress in Lipid Research, 2005, 44, 303-344.	11.6	201
71	Farnesol and geranylgeraniol modulate the structural properties of phosphatidylethanolamine model membranes. Molecular Membrane Biology, 2005, 22, 303-311.	2.0	19
72	The $G\hat{l}^2\hat{l}^3$ Dimer Drives the Interaction of Heterotrimeric Gi Proteins with Nonlamellar Membrane Structures. Journal of Biological Chemistry, 2004, 279, 36540-36545.	3.4	73

#	Article	IF	CITATIONS
73	2-Hydroxyoleic Acid. Hypertension, 2004, 43, 249-254.	2.7	52
74	Increased mRNA Expression of $\hat{l}\pm 2A$ -Adrenoceptors, Serotonin Receptors and $\hat{l}\frac{1}{4}$ -Opioid Receptors in the Brains of Suicide Victims. Neuropsychopharmacology, 2004, 29, 1512-1521.	5.4	116
75	The hypotensive drug 2-hydroxyoleic acid modifies the structural properties of model membranes. Molecular Membrane Biology, 2004, 21, 261-268.	2.0	47
76	Effects of unsaturated fatty acids and triacylglycerols on phosphatidylethanolamine membrane structure. Journal of Lipid Research, 2003, 44, 1720-1727.	4.2	62
77	Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. Journal of Lipid Research, 2003, 44, 567-575.	4.2	128
78	Alteration of Lipids, G Proteins, and PKC in Cell Membranes of Elderly Hypertensives. Hypertension, 2003, 41, 176-182.	2.7	74
79	Membrane Phospholipid Reorganization Differentially Regulates Metallothionein and Heme Oxygenase by Heme–Hemopexin. DNA and Cell Biology, 2002, 21, 355-364.	1.9	19
80	Loss of Protein Kinase $C-\hat{l}\pm\hat{l}^2$ in Brain of Heroin Addicts and Morphine-Dependent Rats. Journal of Neurochemistry, 2002, 64, 247-252.	3.9	44
81	Basic principles underlying the emerging field of lipid therapy. American Clinical Laboratory, 2002, 21, 29-31.	0.1	6
82	Chronic Clorgyline Induces Selective Down-Regulation of alpha2-Adrenoceptor Agonist Binding Sites in Rat Brain. Basic and Clinical Pharmacology and Toxicology, 2000, 87, 269-275.	0.0	6
83	Upâ€Regulation of Immunolabeled α _{2A} â€Adrenoceptors,G _i Coupling Proteins, and Regulatory Receptor Kinases in the Prefrontal Cortex of Depressed Suicides. Journal of Neurochemistry, 1999, 72, 282-291.	3.9	139
84	Pharmacologic Characterization of Imidazoline Receptor Proteins Identified by Immunologic Techniques and Other Methodsa. Annals of the New York Academy of Sciences, 1999, 881, 8-25.	3.8	30
85	Imidazoline Receptors and Human Brain Disordersa. Annals of the New York Academy of Sciences, 1999, 881, 392-409.	3.8	70
86	Parallel modulation of receptor for activated $Ca \in f$ kinase $a \in f$ and protein kinase $a \in f$ C- a and a isoforms in brains morphine-treated rats. British Journal of Pharmacology, 1999, 127, 343-348.	of 5.4	22
87	The alkylating agent EEDQ facilitates protease-mediated degradation of the human brain $\hat{1}\pm2$ A-adrenoceptor as revealed by a sequence-specific antibody. Neuroscience Letters, 1999, 263, 105-108.	2.1	6
88	Imidazoline receptor proteins in brains of patients with Alzheimer's disease. Neuroscience Letters, 1998, 247, 95-98.	2.1	55
89	Density of Imidazoline Receptors in Platelets of Euthymic Patients with Bipolar Affective Disorder and in Brains of Lithium-Treated Rats. Biological Psychiatry, 1998, 43, 616-618.	1.3	13
90	Effects of the alkylating agent EEDQ on regulatory G proteins and recovery of agonist and antagonist $\hat{1}\pm 2$ -adrenoceptor binding sites in rat brain. European Journal of Pharmacology, 1998, 351, 145-154.	3.5	11

#	Article	IF	Citations
91	Regulation of G Proteinâ€Coupled Receptor Kinase 2 in Brains of Opiateâ€Treated Rats and Human Opiate Addicts. Journal of Neurochemistry, 1998, 70, 1249-1257.	3.9	67
92	Density of Guanine Nucleotide-Binding Proteins in Platelets of Patients with Major Depression: Increased Abundance of the Gαi2 Subunit and Down-Regulation by Antidepressant Drug Treatment. Biological Psychiatry, 1997, 42, 704-712.	1.3	35
93	Pharmacological modulation of immunoreactive imidazoline receptor proteins in rat brain: relationship with nonâ€adrenoceptor [⟨sup⟩3⟨ sup⟩H]â€idazoxan binding sites. British Journal of Pharmacology, 1996, 118, 2029-2036.	5.4	35
94	Platelet imidazoline receptors and regulatory G proteins in patients with major depression. NeuroReport, 1996, 8, 169-172.	1.2	22
95	Molecular characterization and isolation of a 45-kilodalton imidazoline receptor protein from the rat brain. Molecular Brain Research, 1995, 32, 187-196.	2.3	27
96	LSL 60101, a selective ligand for imidazoline I2 receptors, on glial fibrillary acidic protein concentration. European Journal of Pharmacology, 1995, 280, 205-210.	3.5	33
97	Pharmacological and Immunological Characterization of Solubilized 130?140- and 66-kD Imidazoline Receptors in the Rat Brain. Annals of the New York Academy of Sciences, 1995, 763, 169-171.	3.8	1
98	I2-Imidazoline Receptors in the Healthy and Pathologic Human Brain. Annals of the New York Academy of Sciences, 1995, 763, 178-193.	3.8	10
99	Decreased Number and Immunoreactivity of I2-Imidazoline Receptors in the Frontal Cortex of Suicide Victims. Annals of the New York Academy of Sciences, 1995, 763, 520-522.	3.8	19
100	Age-dependent increases of immunoreactive imidazoline receptors in the human brain: possible association of a protein with the I2-imidazoline receptor identified by [3H]idazoxan. Neuroscience Letters, 1995, 184, 133-136.	2.1	26
101	Increased Density of Guanine Nucleotide-Binding Proteins in the Postmortem Brains of Heroin Addicts. Archives of General Psychiatry, 1994, 51, 494.	12.3	88
102	A novel plasmid series for in vitro production of phoA translational fusions and its use in the construction of Escherichia coli PhoE: :PhoA hybrid proteins. Gene, 1994, 151, 125-130.	2.2	10
103	The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. British Journal of Pharmacology, 1994, 111, 997-1002.	5.4	65
104	Immunodetection of putative imidazoline receptor proteins in the human and rat brain and other tissues. Neuroscience Letters, 1994, 178, 81-84.	2.1	49
105	Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline downâ€regulates nonâ€adrenoceptor [³ H]â€idazoxan binding sites in the rat brain. British Journal of Pharmacology, 1993, 108, 597-603.	5.4	72
106	A scanning calorimetric study of natural DNA and antitumoral anthracycline antibiotic-DNA complexes. Chemico-Biological Interactions, 1990, 74, 315-324.	4.0	3
107	Role of membrane lipids in the interaction of daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry, 1990, 29, 7275-7282.	2.5	105
108	Ultrastructural alterations in plasma membranes from drug-resistant P388 murine leukemia cells. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1029, 191-195.	2.6	18