Clémence Queffélec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2295995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FT-ICR MS characterization of bio-binders for road pavement from HTL of microalgae residues. Journal of Environmental Chemical Engineering, 2022, 10, 107361.	6.7	7
2	Copper(I) Bis(diimine) Complexes with High Photooxidation Power: Reductive Quenching of the Excited State with a Benzimidazoline Sacrificial Donor. ACS Omega, 2022, 7, 13112-13119.	3.5	3
3	Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments. Construction and Building Materials, 2022, 330, 127076.	7.2	15
4	Bitumen fractionation: Contribution of the individual fractions to the mechanical behavior of road binders. Construction and Building Materials, 2021, 271, 121528.	7.2	12
5	Dehalogenation reaction photocatalyzed by homoleptic copper(i) complexes associated with strongly reductive sacrificial donors. Catalysis Science and Technology, 2021, 11, 6041-6047.	4.1	9
6	Catalytic hydrothermal conversion of algal residue to bio-bitumen. Journal of Cleaner Production, 2021, 322, 129024.	9.3	3
7	Improving the rate of the copper-catalyzed Henry reaction by surface plasmon excitation of gold nanoparticles. Catalysis Science and Technology, 2021, 11, 7875-7885.	4.1	0
8	Investigation of copper oxidation states in plasmonic nanomaterials by XAS and Raman spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 2193-2199.	2.8	7
9	Biobased bitumen analogue formation during hydrothermal treatment of microalgae residues, part 2: Influence of residence time on reaction products. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104940.	5.5	2
10	Surface Modification of Au Nanoparticles with Heteroleptic Cu(I) Diimine Complexes. Journal of Physical Chemistry C, 2020, 124, 11902-11912.	3.1	5
11	Functionalized core–shell Ag@TiO2 nanoparticles for enhanced Raman spectroscopy: a sensitive detection method for Cu(ii) ions. Physical Chemistry Chemical Physics, 2019, 21, 3066-3072.	2.8	21
12	Surface modification of plasmonic noble metal–metal oxide core–shell nanoparticles. Nanoscale Advances, 2019, 1, 4578-4591.	4.6	28
13	Phosphonateâ€Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts. Chemistry - A European Journal, 2018, 24, 2457-2465.	3.3	7
14	Biosourced analogs of elastomer-containing bitumen through hydrothermal liquefaction of Spirulina sp. microalgae residues. Green Chemistry, 2018, 20, 2337-2344.	9.0	17
15	Non-photochemical catalytic hydrolysis of methyl parathion using core–shell Ag@TiO ₂ nanoparticles. RSC Advances, 2018, 8, 42346-42352.	3.6	9
16	Core‧hell Ag@TiO ₂ Nanocomposites for Lowâ€Power Blue Laser Enhanced Copper(I) Catalyzed Ullmann Coupling. ChemistrySelect, 2017, 2, 769-773.	1.5	12
17	Visible light assisted hydrogen generation from complete decomposition of hydrous hydrazine using rhodium modified TiO2 photocatalysts. Photochemical and Photobiological Sciences, 2017, 16, 1036-1042.	2.9	15
18	Wilkinsonâ€Type Immobilized Catalyst on Diamond Nanoparticles for Alkene Reduction. ChemCatChem, 2017, 9, 432-439.	3.7	11

CLéMENCE QUEFFéLEC

#	Article	IF	CITATIONS
19	Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. Langmuir, 2016, 32, 5480-5490.	3.5	2
20	Subcritical Hydrothermal Liquefaction of Microalgae Residues as a Green Route to Alternative Road Binders. ACS Sustainable Chemistry and Engineering, 2015, 3, 583-590.	6.7	43
21	Molybdocene dichloride intercalation into zirconium phosphate nanoparticles. Journal of Organometallic Chemistry, 2015, 791, 34-40.	1.8	14
22	Design and Optimization of a Phosphopeptide Anchor for Specific Immobilization of a Capture Protein on Zirconium Phosphonate Modified Supports. Langmuir, 2014, 30, 13949-13955.	3.5	9
23	Surface Modification Using Phosphonic Acids and Esters. Chemical Reviews, 2012, 112, 3777-3807.	47.7	706
24	Enantioselective Intramolecular Hydroamination of Secondary Amines Catalyzed by Easily Accessible Ate and Neutral Rareâ€Earth Complexes. ChemCatChem, 2011, 3, 122-126.	3.7	27
25	Facile P,N-heterocycle synthesis via tandem aminomethylation–cyclization of H-phosphinate building blocks. Organic and Biomolecular Chemistry, 2010, 8, 267-273.	2.8	11
26	Synthesis and biological activities of a series of 4,5-diaryl-3-hydroxy-2(5H)-furanones. European Journal of Medicinal Chemistry, 2008, 43, 1222-1229.	5.5	28
27	The total synthesis of fukiic acid, an HIV-1 integrase inhibitor. European Journal of Medicinal Chemistry, 2008, 43, 2268-2271.	5.5	10
28	Synthesis and antiviral properties of some polyphenols related to Salvia genus. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4736-4740.	2.2	25
29	Synthesis of P,N-Heterocycles from ω-Amino- <i>H</i> -Phosphinates: Conformationally Restricted α-Amino Acid Analogs. Journal of Organic Chemistry, 2008, 73, 8987-8991.	3.2	20
30	Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5053-5056.	2.2	29