Neil Anderson

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/2295659/publications.pdf
Version: 2024-02-01

$1 \begin{aligned} & \text { Basil, <scp><i> Ocimum basilicum, </i></scp> yield in northern latitudinal aquaponic growing } \\ & \text { conditions. Journal of the World Aquaculture Society, 2022, 53, 77-94. }\end{aligned}$

Controlled freezing studies as a corollary selection method for winterhardiness in perennial flax. Crop Science, 2022, 62, 1734-1757.

Rapid generation cycling transforms pyrethrum (<i>Chrysanthemum cinerariifolium</i>) into an annualized perennial. Crop Science, 2021, 61, 1207-1227.
1.8

Riparian populations of minnesota reed canarygrass (Phalaris arundinacea) are most likely native, based on SNPs (DArTseqLD). Wetlands Ecology and Management, 2021, 29, 467-494.
1.5

History of knotweed (<i>Fallopia</i>spp.) invasiveness. Weed Science, 2021, 69, 617-623.
1.5

Variability in ITS1 and ITS2 sequences of historic herbaria and extant (fresh) Phalaris species (Poaceae).
BMC Plant Biology, 2021, 21, 515.

Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food
$7 \quad$ Anaerobically-Digested Brewery \quad Production. Horticulturae, 2019, 5, 43.

Domestication of Perennial Flax Using an Ideotype Approach for Oilseed, Cut Flower, and Garden
Performance. Agronomy, 2019, 9, 707.

Nitrogen concentration of the aquatic plant species in relation to land cover type and other
variables of the environment. Zemdirbyste, 2019, 106, 203-212.

Lettuce (Lactuca sativa) Production in Northern Latitudinal Aquaponic Growing Conditions.
10 Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1757-1761.
1.0

11

11 Throwing Out the Bathwater but Keeping the Baby: Lessons Learned from Purple Loosestrife and Reed
Canarygrass. HortTechnology, 2019, 29, 539-548.

Challenges of Establishing Native versus Exotic Status of Herbarium Specimens. HortTechnology, 2019,
29, 549-553.
Genetic diversity of <scp> <i>phalaris arundinacea</i></scp> populations in relation to river
13 regulation in the $\langle s c p\rangle M<\mid s c p>e r k y s$ basin, $\langle s c p\rangle L\langle\mid s c p\rangle$ ithuania. River Research and Applications,
1.7

2018, 34, 300-309.

Consumer preferences for aquaponic produce: Implications from an experimental auction. Agribusiness, 2018, 34, 742-755.

Consumer Perceptions of Aquaponic Systems. HortTechnology, 2017, 27, 358-366.
0.9

20

Phenotypic and Genotypic Variation in Czech Forage, Ornamental and Wild Populations of Reed Canarygrass. Crop Science, 2016, 56, 2421-2435.

Variation Among Genotypes and Source Habitats in Growth and Fecundity of the Wetland Invasive
Plant Phalaris arundinacea L. Wetlands, 2015, 35, 1175-1184.
1.5
1.8

9

How many marker loci are necessary? Analysis of dominant marker data sets using two popular population genetic algorithms. Ecology and Evolution, 2013, 3, 3455-3470.
1.9

29

21	Use of morphological, molecular markers and cytology to differentiate between closely related Gaura coccinea, G. drummondii for breeding purposes. Euphytica, 2012, 183, 95-109.	1.2	1
22	Cultivar and Site-Specific Variation Affect Establishment Potential of the Cleomes Roughseed Clammyweed (Polanisia dodecandra) and Spiderflower (Cleome hassleriana). Invasive Plant Science and Management, 2011, 4, 102-114.	1.1	0
23	Undergraduate Writing Promotes Studentâ $€^{T M}$ s Understanding of International Sustainable Development in Horticulture. Sustainability, 2011, 3, 2470-2495.	3.2	0
24	Undergraduate Sustainable Learning: Effects of Sustainable Soilless Media on Production and Sensory Evaluation of Cucumbers, Basil, Parsley, and Lettuce. Sustainability, 2011, 3, 1381-1398.	3.2	4
25	Do native and invasive labels affect consumer willingness to pay for plants? Evidence from experimental auctions. Agricultural Economics (United Kingdom), 2011, 42, 195-205.	3.9	36

Conundrums of a complex vector for invasive species control: a detailed examination of the
horticultural industry. Biological Invasions, 2010, 12, 2837-2851. $\quad 2.4$
Epigenetic variation in tissue cultured Gaura lindheimeri. Plant Cell, Tissue and Organ Culture, 2007,
$89,91-103$.

Comparative analysis of laboratory freezing methods to establish cold tolerance of detached
30 rhizomes and intact crowns in garden chrysanthemums (Dendranthema \tilde{A}-grandiflora Tzvelv.). Scientia
3.6

12
Horticulturae, 2006, 109, 345-352.
31 Statistical discrimination between pollen tube growth and seed set in establishing self incompatibility in Gaura lindheimeri 1. Euphytica, 2006, 149, 237-250.

32 A non-invasive crop ideotype to reduce invasive potential. Euphytica, 2006, 148, 185-202.
1.2

43

33	Minnesota horticultural industry survey on invasive plants. Euphytica, 2006, 148, 75-86.	1.2

34 Selection strategies to reduce invasive potential in introduced plants. Euphytica, 2006, 148, 203-216.
1.2

42

Efficacy of Colchicine and Trifluralin in Creating In Vitro Autotetraploid Gaura lindheimeri Engelm.
 35 and Gray. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41,

1.0

3
1656-1661.

Phenotypic markers for selection of winter hardy garden chrysanthemum
(DendranthemaÃ-grandiflora Tzvelv.) genotypes. Scientia Horticulturae, 2004, 101, 153-167.
Inheritance of Seed Set, Germination, and Day Neutrality/Heat Delay Insensitivity of Garden
39 Chrysanthemums (Dendranthema Ã-grandiflora) under Classhouse and Field Conditions. Journal of
$1.0 \quad 9$
the American Society for Horticultural Science, 2004, 129, 509-516.
40 Garden Chrysanthemums 'Peach Centerpiece' and 'Sesquicentennial Sun'. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 1349-1351.
$1.0 \quad 7$

41 | Selection of Day-neutral, Heat-delay-insensitive DendranthemA $\tilde{\text {-grandiflora Genotypes. Journal of the }}$ |
| :--- |
| American Society for Horticultural Science, 2001, 126, $710-721$. |

Fertility Changes in Inbred Families of Self-incompatible Chrysanthemums (Dendranthema) Tj ETQq0 00 rgBT /Overlock 10 Tff 50542 Td

