David D Mcnamara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Slow slip source characterized by lithological and geometric heterogeneity. Science Advances, 2020, 6, eaay3314.	10.3	95
2	Lateâ€interseismic state of a continental plateâ€bounding fault: Petrophysical results from DFDPâ€1 wireline logging and core analysis, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 2013, 14, 3801-3820.	2.5	43
3	Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo Volcanic Zone, New Zealand. Geothermics, 2015, 53, 190-201.	3.4	41
4	A review of the Rotokawa Geothermal Field, New Zealand. Geothermics, 2016, 59, 281-293.	3.4	39
5	Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand. Journal of Geophysical Research: Solid Earth, 2015, 120, 1243-1262.	3.4	36
6	Fabrics produced mimetically during static metamorphism in retrogressed eclogites from the Zermatt-Saas zone, Western Italian Alps. Journal of Structural Geology, 2012, 44, 167-178.	2.3	33
7	Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. Geology, 2019, 47, 872-876.	4.4	33
8	Analysis of the favorability for geothermal fluid flow in 3D: Astor Pass geothermal prospect, Great Basin, northwestern Nevada, USA. Geothermics, 2016, 60, 1-12.	3.4	29
9	Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand. Journal of Structural Geology, 2016, 90, 76-94.	2.3	28
10	Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping. Journal of Volcanology and Geothermal Research, 2016, 323, 38-52.	2.1	24
11	Statistical methods of fracture characterization using acoustic borehole televiewer log interpretation. Journal of Geophysical Research: Solid Earth, 2017, 122, 6836-6852.	3.4	23
12	Physical Properties and Gas Hydrate at a Near‣eafloor Thrust Fault, Hikurangi Margin, New Zealand. Geophysical Research Letters, 2020, 47, e2020GL088474.	4.0	20
13	Fault Permeability and CO2 Storage. Energy Procedia, 2017, 114, 3229-3236.	1.8	18
14	Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault. Solid Earth, 2018, 9, 469-489.	2.8	15
15	Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic highâ€ŧemperature geothermal field. Journal of Geophysical Research: Solid Earth, 2017, 122, 6853-6874.	3.4	14
16	The Alpine Fault Hangingwall Viewed From Within: Structural Analysis of Ultrasonic Image Logs in the DFDPâ€2B Borehole, New Zealand. Geochemistry, Geophysics, Geosystems, 2018, 19, 2492-2515.	2.5	14
17	Tectonic Controls on Taupo Volcanic Zone Geothermal Expression: Insights From Te Mihi, Wairakei Geothermal Field. Tectonics, 2019, 38, 3011-3033.	2.8	11
18	Quantitative geometric description of fracture systems in an andesite lava flow using terrestrial laser scanner data. Journal of Volcanology and Geothermal Research, 2017, 341, 315-331.	2.1	11

DAVID D MCNAMARA

#	Article	IF	CITATIONS
19	Characterizing the subsurface structure and stress of New Zealand's geothermal fields using borehole images. Energy Procedia, 2017, 125, 273-282.	1.8	9
20	Variable In Situ Stress Orientations Across the Northern Hikurangi Subduction Margin. Geophysical Research Letters, 2021, 48, e2020GL091707.	4.0	8
21	Omphacite—a mineral under pressure!. Geology Today, 2012, 28, 71-75.	0.9	6
22	Effects of regional and local stresses on fault slip tendency in the southern Taranaki Basin, New Zealand. Marine and Petroleum Geology, 2019, 107, 467-483.	3.3	6
23	Spatial Variation of Shallow Stress Orientation Along the Hikurangi Subduction Margin: Insights From Inâ€Situ Borehole Image Logging. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
24	Asymmetric Brittle Deformation at the PÄpaku Fault, Hikurangi Subduction Margin, NZ, IODP Expedition 375. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009662.	2.5	4
25	Physical and Mechanical characteristic relationships of Late-Cretaceous to Eocene reservoir rocks in the Maui, Maari and Manaia Fields, New Zealand. Journal of Petroleum Science and Engineering, 2022, 213, 110375.	4.2	3
26	Quantitative Analysis of EBSD Data in Rocks and other Crystalline Materials: Investigation of Strain Induced Recrystallisation and Growth of New Phases. Materials Science Forum, 2012, 715-716, 62-71.	0.3	2
27	Physical property characterization of the Waipapa greywacke: an important geothermal reservoir basement rock in New Zealand. Geothermal Energy, 2022, 10, .	1.9	2
28	Feasibility of Storing Carbon Dioxide on a Tectonically Active Margin: New Zealand. , 2015, , .		0