Yiliang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2292257/publications.pdf Version: 2024-02-01

YILLANC CHEN

#	Article	lF	CITATIONS
1	CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. Journal of Experimental Medicine, 2022, 219, .	8.5	105
2	Regulation of Adipocyte Metabolic Homeostasis by SRâ \in BI and PCPE2. FASEB Journal, 2022, 36, .	0.5	0
3	Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunology Research, 2021, 9, 454-469.	3.4	23
4	CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death and Disease, 2021, 12, 523.	6.3	56
5	AMPK-deficiency forces metformin-challenged cancer cells to switch from carbohydrate metabolism to ketogenesis to support energy metabolism. Oncogene, 2021, 40, 5455-5467.	5.9	13
6	Hypertriglyceridemia during hospitalization independently associates with mortality in patients with COVID-19. Journal of Clinical Lipidology, 2021, 15, 724-731.	1.5	14
7	Modification of HDL by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. FEBS Journal, 2020, 287, 695-707.	4.7	13
8	Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. American Journal of Physiology - Cell Physiology, 2020, 319, C1107-C1119.	4.6	8
9	Oxidant-Induced Alterations in the Adipocyte Transcriptome: Role of the Na,K-ATPase Oxidant Amplification Loop. International Journal of Molecular Sciences, 2020, 21, 5923.	4.1	7
10	A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and <i>C. elegans</i> . Science Advances, 2020, 6, eaaw5851.	10.3	9
11	Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na ⁺ /K ⁺ â€ATPaseâ€Î±â€1. Journal of the American Heart Association, 2020, e013933.	9,3.7	9
12	Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circulation Research, 2019, 125, 1087-1102.	4.5	114
13	Platelet metabolism meets thrombosis. Blood, 2018, 132, 1089-1091.	1.4	3
14	Abstract 586: Oxidized LDL Induce a Metabolic Switch Through CD36 in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
15	Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1462-1469.	2.4	23
16	Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood, 2017, 129, 2917-2927.	1.4	64
17	Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget, 2017, 8, 22550-22562.	1.8	29
18	Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 534-544.	2.4	48

YILIANG CHEN

#	Article	IF	CITATIONS
19	Abstract 450: Modification of HDL by Reactive Aldehydes Impairs HDL's Athero-protective Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
20	Platelet CD36 Potentiates Thrombus Formation in Hyperlipidemic Conditions By Activating Redox Sensitive MAP Kinase ERK5. Blood, 2016, 128, 710-710.	1.4	8
21	Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins. PLoS ONE, 2015, 10, e0123138.	2.5	33
22	Oxidized LDL–bound CD36 recruits an Na ⁺ /K ⁺ -ATPase–Lyn complex in macrophages that promotes atherosclerosis. Science Signaling, 2015, 8, ra91.	3.6	73
23	Abstract A09: Diet-induced obesity promotes breast cancer progression by LPA-signaling-mediated functional changes of mitochondria and angiogenesis. , 2015, , .		3
24	Platelet CD36 Induces ERK5 Activation through a Redox-Regulated Signaling Pathway to Promote a Prothrombotic Phenotype. Blood, 2015, 126, 1033-1033.	1.4	23
25	CD36 and Na/K-ATPase-α1 Form a Proinflammatory Signaling Loop in Kidney. Hypertension, 2013, 61, 216-224.	2.7	84
26	Regulation Of Angiogenesis By Phospholipid Lysophosphatidic Acid. Frontiers in Bioscience - Landmark, 2013, 18, 852.	3.0	28
27	Abstract LB-338: A novel LPA-PKD1-FoxO1 pathway in endothelial cells provides an angiogenic switch via down-regulation of CD36 transcription and induction of arteriogenic responses , 2013, , .		2
28	Reduction of Na/K-ATPase Potentiates Marinobufagenin-induced Cardiac Dysfunction and Myocyte Apoptosis. Journal of Biological Chemistry, 2012, 287, 16390-16398.	3.4	37
29	Regulation of α1 Na/K-ATPase Expression by Cholesterol. Journal of Biological Chemistry, 2011, 286, 15517-15524.	3.4	41
30	Inhibition of the Signaling Function of Na/Kâ€ATPase Produces Salt‣ensitive Hypertension. FASEB Journal, 2011, 25, lb627.	0.5	0
31	Regulation of Intracellular Cholesterol Distribution by Na/K-ATPase. Journal of Biological Chemistry, 2009, 284, 14881-14890.	3.4	49
32	Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. Journal of Cell Biology, 2008, 182, 1153-1169.	5.2	99
33	Editorial: The Roles of Lipids in Immunometabolism: The Crosstalk Between Lipid Metabolisms and Inflammation. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	1