
Corinne Chaneac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 33555-33566.	8.0	32
2	Silica-clay nanocomposites for the removal of antibiotics in the water usage cycle. Environmental Science and Pollution Research, 2021, 28, 7564-7573.	5.3	9
3	Experimental measurement of local high temperature at the surface of gold nanorods using doped ZnGa ₂ O ₄ as a nanothermometer. Nanoscale Advances, 2021, 3, 2862-2869.	4.6	8
4	Interplay of Solid–Liquid Interactions and Anisotropic Aggregation in Solution: The Case Study of γ-AlOOH Crystallites. Journal of Physical Chemistry C, 2021, 125, 26049-26060.	3.1	4
5	The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. Environmental Science: Nano, 2020, 7, 3167-3177.	4.3	9
6	Mechanism and kinetics of hematite reduction under typical PWR secondary circuit condition. Journal of Nuclear Materials, 2020, 533, 152132.	2.7	1
7	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Interfaces, 2020, 12, 13598-13612.	8.0	25
8	Nanoconfined water vapour as a probe to evaluate plasmonic heating. Nanoscale, 2020, 12, 13368-13376.	5.6	5
9	NIR-Persistent Luminescence Nanoparticles for Bioimaging, Principle and Perspectives. , 2020, , 163-197.		10
10	Direct Synthesis of Nâ€Heterocyclic Carbeneâ€Stabilized Copper Nanoparticles from an Nâ€Heterocyclic Carbene–Borane. Chemistry - A European Journal, 2019, 25, 11481-11485.	3.3	20
11	Band Gap Engineering from Cation Balance: The Case of Lanthanide Oxysulfide Nanoparticles. Chemistry of Materials, 2019, 31, 5014-5023.	6.7	17
12	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
13	Mechanism and kinetics of magnetite oxidation under hydrothermal conditions. RSC Advances, 2019, 9, 33633-33642.	3.6	54
14	N-Heterocyclic carbene-stabilized gold nanoparticles with tunable sizes. Dalton Transactions, 2018, 47, 6850-6859.	3.3	43
15	Luminescence properties of ZnGa ₂ O ₄ :Cr ³⁺ ,Bi ³⁺ nanophosphors for thermometry applications. RSC Advances, 2018, 8, 41767-41774.	3.6	42
16	Radiation effects, photoluminescence and radioluminescence of Eu-doped (Y0.7Gd0.3)2O3 nanoparticles with various sizes. Optical Materials, 2018, 86, 582-589.	3.6	1
17	LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging. Journal of Luminescence, 2018, 202, 83-88.	3.1	45
18	A high pressure pathway toward boron-based nanostructured solids. Dalton Transactions, 2018, 47, 7634-7639.	3.3	27

#	Article	IF	CITATIONS
19	Interaction of TiO2 nanoparticles with proteins from aquatic organisms: the case of gill mucus from blue mussel. Environmental Science and Pollution Research, 2017, 24, 13474-13483.	5.3	10
20	Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles. ACS Nano, 2017, 11, 7371-7381.	14.6	35
21	Quantified Binding Scale of Competing Ligands at the Surface of Gold Nanoparticles: The Role of Entropy and Intermolecular Forces. Small, 2017, 13, 1604028.	10.0	21
22	Rationalizing the formation of binary mixed thiol self-assembled monolayers. Materials Today Chemistry, 2017, 5, 34-42.	3.5	13
23	Bipyramidal anatase TiO2 nanoparticles, a highly efficient photocatalyst? Towards a better understanding of the reactivity. Applied Catalysis B: Environmental, 2017, 203, 324-334.	20.2	18
24	Flyscan opportunities in medicine: the case of quantum rattle based on gold quantum dots. Journal of Synchrotron Radiation, 2017, 24, 991-999.	2.4	12
25	Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. RSC Advances, 2016, 6, 108146-108150.	3.6	9
26	Multifunctional core–shell hybrid nano-composites made using Pickering emulsions: a new design for therapeutic vectors. New Journal of Chemistry, 2016, 40, 4436-4446.	2.8	5
27	Gadolinium oxysulfide nanoprobes with both persistent luminescent and magnetic properties for multimodal imaging. RSC Advances, 2016, 6, 55472-55478.	3.6	13
28	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. Environmental Science & Technology, 2016, 50, 6892-6901.	10.0	30
29	Study on the persistent luminescence of diopside nanotracers CaMgSi2O6: Eu2+, Mn2+, Pr3+. , 2016, , .		1
30	Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging. Journal of Luminescence, 2016, 170, 460-466.	3.1	38
31	Insight into CaMgSi ₂ O ₆ :Eu ²⁺ ,Mn ²⁺ ,Dy ³⁺ Nanoprobes: Influence of Chemical Composition and Crystallinity on Persistent Red Luminescence. European Journal of Inorganic Chemistry, 2015, 2015, 3681-3687.	2.0	21
32	New Insights Into BiVO ₄ Properties as Visible Light Photocatalyst. Journal of Physical Chemistry C, 2015, 119, 12967-12977.	3.1	134
33	The Challenge of Studying TiO ₂ Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer. Environmental Science & Technology, 2015, 49, 2451-2459.	10.0	65
34	Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic Thiol-Capped Gold Nanoparticles. ACS Nano, 2015, 9, 7572-7582.	14.6	67
35	Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. Nanoscale, 2015, 7, 9545-9551.	5.6	46
36	Versatile nano-platforms for hybrid systems: expressing spin-transition behavior on nanoparticles. Journal of Materials Chemistry C, 2015, 3, 3350-3355.	5.5	8

#	Article	IF	CITATIONS
37	Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO ₂ nanoparticles. Environmental Science: Nano, 2015, 2, 653-663.	4.3	42
38	Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids. Nanomaterials, 2014, 4, 612-627.	4.1	12
39	Magnetization analysis of oriented chains of hexagonal cobalt nanoplates. Journal of Applied Physics, 2014, 115, 178521.	2.5	1
40	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
41	Infrared dichroism of gold nanorods controlled using a magnetically addressable mesophase. Journal of Materials Chemistry C, 2014, 2, 5087.	5.5	2
42	Aged TiO ₂ -Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and Sensitizes <i>Escherichia coli</i> to Cadmium. Environmental Science & Technology, 2014, 48, 5245-5253.	10.0	40
43	Hybrid Nanocomposites with Tunable Alignment of the Magnetic Nanorod Filler. ACS Applied Materials & Interfaces, 2014, 6, 1583-1588.	8.0	8
44	Ligand and Solvation Effects on the Structural and Electronic Properties of Small Gold Clusters. Journal of Physical Chemistry C, 2014, 118, 4362-4376.	3.1	34
45	Facile synthesis and magnetic characterizations of single-crystalline hexagonal cobalt nanoplates. Materials Letters, 2013, 94, 121-123.	2.6	3
46	Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO ₂ Studied by Adsorption Techniques. 2. Solid–Liquid Interface. Journal of Physical Chemistry C, 2013, 117, 4459-4469.	3.1	25
47	New Insights into Bi ₂ WO ₆ Properties as a Visible-Light Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 22656-22666.	3.1	157
48	Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids and Surfaces B: Biointerfaces, 2013, 102, 158-164.	5.0	57
49	Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Optics Express, 2012, 20, 27636.	3.4	21
50	Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?. Environmental Science & Technology, 2012, 46, 10789-10796.	10.0	13
51	Do TiO ₂ Nanoparticles Really Taste Better When Cooked in a Microwave Oven?. European Journal of Inorganic Chemistry, 2012, 2012, 2707-2715.	2.0	33
52	Influence of Structure and Organicâ€Inorganic Phase Interactions on Coating Mechanical Properties in the Ternary Goethite:Poly(HEMA):Silica System. European Journal of Inorganic Chemistry, 2012, 2012, 2675-2683.	2.0	4
53	Use of polyols as particle size and shape controllers: application to boehmite synthesis from sol–gel routes. Physical Chemistry Chemical Physics, 2011, 13, 6241.	2.8	25
54	Bi ₂ O ₃ , BiVO ₄ , and Bi ₂ WO ₆ : Impact of Surface Properties on Photocatalytic Activity under Visible Light. Journal of Physical Chemistry C, 2011, 115, 5657-5666.	3.1	293

#	Article	IF	CITATIONS
55	Basic concepts of the crystallization from aqueous solutions: The example of aluminum oxy(hydroxi)des and aluminosilicates. Comptes Rendus - Geoscience, 2011, 343, 113-122.	1.2	40
56	Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus - Geoscience, 2011, 343, 168-176.	1.2	43
57	New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III). Geochimica Et Cosmochimica Acta, 2011, 75, 2708-2720.	3.9	139
58	Scattering of ultrasonic shock waves in suspensions of silica nanoparticles. Journal of the Acoustical Society of America, 2011, 129, 1209-1220.	1.1	8
59	Evidences for the relationship between surface structure andÂreactivity of goethite nanoparticles based on advanced molecular-probe methods. Adsorption, 2010, 16, 185-195.	3.0	5
60	Supramolecular Soft Adhesive Materials. Advanced Functional Materials, 2010, 20, 1803-1811.	14.9	129
61	Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry. Comptes Rendus Chimie, 2010, 13, 40-51.	0.5	86
62	Evidence for Photoconductivity Anisotropy in Aligned TiO ₂ Nanorod Films. Journal of Physical Chemistry C, 2010, 114, 19799-19802.	3.1	11
63	Structural Degradation at the Surface of a TiO ₂ -Based Nanomaterial Used in Cosmetics. Environmental Science & Technology, 2010, 44, 2689-2694.	10.0	193
64	Lyotropic Lamellar Phase Doped with a Nematic Phase of Magnetic Nanorods. Langmuir, 2010, 26, 4586-4589.	3.5	23
65	Red long-lasting luminescence in clinoenstatite. Journal of Luminescence, 2009, 129, 1527-1530.	3.1	24
66	Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding. Physical Chemistry Chemical Physics, 2009, 11, 11310.	2.8	53
67	Design of oxide nanoparticles by aqueous chemistry. Journal of Sol-Gel Science and Technology, 2008, 46, 299-305.	2.4	58
68	Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles:  As(III) as a Probe of the Surface Structure and Heterogeneity. Langmuir, 2008, 24, 3215-3222.	3.5	185
69	Accurate Determination of Oxide Nanoparticle Size and Shape Based on X-Ray Powder Pattern Simulation: Application to Boehmite AlOOH. Journal of Physical Chemistry C, 2008, 112, 8524-8533.	3.1	96
70	Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward <i>Escherichia coli</i> . Environmental Science & Technology, 2008, 42, 6730-6735.	10.0	487
71	Magnetic Nanorods Confined in a Lamellar Lyotropic Phase. Langmuir, 2008, 24, 8205-8209.	3.5	34
72	Rhombohedral Shape of Hematite Nanocrystals Synthesized via Thermolysis of an Additive-free Ferric Chloride Solution. Journal of Physical Chemistry C, 2007, 111, 16866-16870.	3.1	58

#	Article	IF	CITATIONS
73	Design of Liquid-Crystalline Aqueous Suspensions of Rutile Nanorods:Â Evidence of Anisotropic Photocatalytic Properties. Journal of the American Chemical Society, 2007, 129, 5904-5909.	13.7	83
74	Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9266-9271.	7.1	747
75	Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. Journal of Materials Chemistry, 2007, 17, 1563-1569.	6.7	133
76	Potentialities of silica/alginate nanoparticles as Hybrid Magnetic Carriers. International Journal of Pharmaceutics, 2007, 344, 128-134.	5.2	43
77	A new story in the structural chemistry of cerium(IV) phosphate. Journal of Physics and Chemistry of Solids, 2007, 68, 795-798.	4.0	20
78	Design of iron oxide/silica/alginate hybrid magnetic carriers (HYMAC). Journal of Nanoscience and Nanotechnology, 2007, 7, 4649-54.	0.9	1
79	In Vitro Interactions between DMSA-Coated Maghemite Nanoparticles and Human Fibroblasts:Â A Physicochemical and Cyto-Genotoxical Studyâ€. Environmental Science & Technology, 2006, 40, 4367-4373.	10.0	195
80	Iron oxides: From molecular clusters to solid. A nice example of chemical versatility. Comptes Rendus - Geoscience, 2006, 338, 488-497.	1.2	121
81	Synthesis and characterization of CeIV(PO4)(HPO4)0.5(H2O)0.5. Journal of Physics and Chemistry of Solids, 2006, 67, 1075-1078.	4.0	24
82	Magnetic order in - nanoparticles: a XMCD study. Journal of Magnetism and Magnetic Materials, 2005, 288, 354-365.	2.3	161
83	The First Structure of a Cerium(IV) Phosphate: Ab Initio Rietveld Analysis of CeIV(PO4)(HPO4)0.5(H2O)0.5. Angewandte Chemie - International Edition, 2005, 44, 5691-5694.	13.8	33
84	Comment on â€~Magnetic relaxation phenomena and inter-particle interactions in nanosized γ-Fe2O3systems'. Journal of Physics Condensed Matter, 2005, 17, 2243-2249.	1.8	1
85	Attempt toward 1D Cross-Linked Thermoplastic Elastomers:Â Structure and Mechanical Properties of a New System. Macromolecules, 2005, 38, 1752-1759.	4.8	110
86	Iron oxide chemistry. From molecular clusters to extended solid networks. Chemical Communications, 2004, , 477-483.	4.1	282
87	Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. Journal of Materials Chemistry, 2004, 14, 3281-3288.	6.7	182
88	Surface effects in noninteracting and interacting Î ³ -Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2003, 262, 6-14.	2.3	126
89	Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. Journal of Materials Chemistry, 2003, 13, 877-882.	6.7	207
90	Synthesis of iron oxide-based magnetic nanomaterials and composites. Comptes Rendus Chimie, 2002, 5, 659-664.	0.5	53

#	Article	IF	CITATIONS
91	Surface-related properties of Î ³ -Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2000, 221, 63-79.	2.3	272
92	Adsorption phenomena and magnetic properties of γ-Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 1999, 203, 63-65.	2.3	29
93	Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. Journal of Colloid and Interface Science, 1998, 205, 205-212.	9.4	353
94	Structural and Magnetic Characterization ofε-Fe2O3. Journal of Solid State Chemistry, 1998, 139, 93-104.	2.9	272
95	Magnetic iron oxide–silica nanocomposites. Synthesis and characterization. Journal of Materials Chemistry, 1996, 6, 1905-1911.	6.7	116
96	Thermal behavior of spinel iron oxide-silica composites. Scripta Materialia, 1995, 6, 715-718.	0.5	65