
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291193/publications.pdf Version: 2024-02-01

HENK BOUNK

#	Article	lF	CITATIONS
1	Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014, 8, 128-132.	15.6	1,320
2	Nontemplate Synthesis of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles. Journal of the American Chemical Society, 2014, 136, 850-853.	6.6	1,128
3	Luminescent Ionic Transitionâ€Metal Complexes for Lightâ€Emitting Electrochemical Cells. Angewandte Chemie - International Edition, 2012, 51, 8178-8211.	7.2	857
4	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017, 2, 1214-1222.	8.8	826
5	Trapâ€Assisted Nonâ€Radiative Recombination in Organic–Inorganic Perovskite Solar Cells. Advanced Materials, 2015, 27, 1837-1841.	11.1	684
6	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	15.6	590
7	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
8	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	15.6	410
9	Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7, 994.	15.6	409
10	Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2010, 94, 366-375.	3.0	326
11	Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4, 6071.	1.6	283
12	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
13	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	13.1	268
14	High efficiency single-junction semitransparent perovskite solar cells. Energy and Environmental Science, 2014, 7, 2968-2973.	15.6	266
15	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
16	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	10.2	255
17	Hybrid Organic–Inorganic Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 1829-1845.	11.1	253
18	Archetype Cationic Iridium Complexes and Their Use in Solid‣tate Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2009, 19, 3456-3463.	7.8	239

#	Article	IF	CITATIONS
19	Light-emitting electrochemical cells: recent progress and future prospects. Materials Today, 2014, 17, 217-223.	8.3	239
20	Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes:Â A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2007, 46, 5989-6001.	1.9	237
21	Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes. Inorganic Chemistry, 2008, 47, 980-989.	1.9	222
22	Stable Single-Layer Light-Emitting Electrochemical Cell Using 4,7-Diphenyl-1,10-phenanthroline-bis(2-phenylpyridine)iridium(III) Hexafluorophosphate. Journal of the American Chemical Society, 2006, 128, 14786-14787.	6.6	191
23	Longâ€Living Lightâ€Emitting Electrochemical Cells – Control through Supramolecular Interactions. Advanced Materials, 2008, 20, 3910-3913.	11.1	185
24	Copper(i) complexes for sustainable light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 16108.	6.7	184
25	Efficient Polymer Lightâ€Emitting Diode Using Airâ€Stable Metal Oxides as Electrodes. Advanced Materials, 2009, 21, 79-82.	11.1	172
26	Near-Quantitative Internal Quantum Efficiency in a Light-Emitting Electrochemical Cell. Inorganic Chemistry, 2008, 47, 9149-9151.	1.9	169
27	Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes. Chemical Physics Letters, 2006, 422, 184-191.	1.2	168
28	Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium(iii) complex. Journal of Materials Chemistry, 2007, 17, 5032.	6.7	166
29	Operating Modes of Sandwiched Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2011, 21, 1581-1586.	7.8	164
30	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
31	Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact Advanced Functional Materials, 2008, 18, 145-150.	7.8	158
32	Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fillâ€Factor Solar Cells. Advanced Materials, 2016, 28, 9839-9845.	11.1	150
33	Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode. Applied Physics Letters, 2007, 91, 223501.	1.5	148
34	Simple, Fast, Bright, and Stable Light Sources. Advanced Materials, 2012, 24, 897-900.	11.1	148
35	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	1.5	148
36	Efficient and Longâ€Living Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2010, 20, 1511-1520.	7.8	147

#	Article	IF	CITATIONS
37	Vacuum Deposited Tripleâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703506.	10.2	147
38	Influence of the Intermediate Density-of-States Occupancy on Open-Circuit Voltage of Bulk Heterojunction Solar Cells with Different Fullerene Acceptors. Journal of Physical Chemistry Letters, 2010, 1, 2566-2571.	2.1	140
39	A Supramolecularly-Caged Ionic Iridium(III) Complex Yielding Bright and Very Stable Solid-State Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2008, 130, 14944-14945.	6.6	138
40	Ion‣elective Organic Electrochemical Transistors. Advanced Materials, 2014, 26, 4803-4807.	11.1	136
41	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	15.6	136
42	Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs <i>via</i> an energy cascade. Energy and Environmental Science, 2018, 11, 1770-1778.	15.6	135
43	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	10.2	132
44	Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination. Chemical Physics Letters, 2008, 465, 57-62.	1.2	122
45	Near-UV to red-emitting charged bis-cyclometallated iridium(<scp>iii</scp>) complexes for light-emitting electrochemical cells. Dalton Transactions, 2012, 41, 180-191.	1.6	121
46	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, 2014, 2, .	2.2	118
47	Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 424-430.	8.8	117
48	Intramolecular π-Stacking in a Phenylpyrazole-Based Iridium Complex and Its Use in Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2010, 132, 5978-5980.	6.6	116
49	Observation of Electroluminescence at Room Temperature from a Ruthenium(II) Bis-Terpyridine Complex and Its Use for Preparing Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2005, 44, 5966-5968.	1.9	114
50	Efficient and Stable Solid-State Light-Emitting Electrochemical Cell Using Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) Hexafluorophosphate. Journal of the American Chemical Society, 2006, 128, 46-47.	6.6	113
51	Charged Bis-Cyclometalated Iridium(III) Complexes with Carbene-Based Ancillary Ligands. Inorganic Chemistry, 2013, 52, 10292-10305.	1.9	110
52	Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 2015, 27, 6535-6542.	3.2	110
53	Efficient photovoltaic and electroluminescent perovskite devices. Chemical Communications, 2015, 51, 569-571.	2.2	110
54	Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Applied Energy Materials, 2019, 2, 6280-6287.	2.5	110

#	Article	IF	CITATIONS
55	Origin of the Enhanced Photoluminescence Quantum Yield in MAPbBr ₃ Perovskite with Reduced Crystal Size. ACS Energy Letters, 2018, 3, 1458-1466.	8.8	106
56	Efficient deep-red light-emitting electrochemical cells based on a perylenediimide-iridium-complex dyad. Chemical Communications, 2009, , 3886.	2.2	103
57	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	15.6	102
58	Photophysical Properties of Charged Cyclometalated Ir(III) Complexes: A Joint Theoretical and Experimental Study. Inorganic Chemistry, 2011, 50, 7229-7238.	1.9	101
59	Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer. Journal of Physical Chemistry Letters, 2018, 9, 1041-1046.	2.1	101
60	Mixed Iodide–Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3743-3748.	2.1	100
61	Perovskite solar cells prepared by flash evaporation. Chemical Communications, 2015, 51, 7376-7378.	2.2	99
62	Highly Luminescent Half-Lantern Cyclometalated Platinum(II) Complex: Synthesis, Structure, Luminescence Studies, and Reactivity Inorganic Chemistry, 2012, 51, 3427-3435.	1.9	98
63	Light-Emitting Electrochemical Cells Using Cyanine Dyes as the Active Components. Journal of the American Chemical Society, 2013, 135, 18008-18011.	6.6	98
64	High voltage vacuum-deposited CH ₃ NH ₃ PbI ₃ –CH ₃ NH ₃ PbI ₃ tandem solar cells. Energy and Environmental Science, 2018, 11, 3292-3297.	15.6	98
65	Highly Stable Red-Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2017, 139, 3237-3248.	6.6	95
66	Solvent-Free Synthesis and Thin-Film Deposition of Cesium Copper Halides with Bright Blue Photoluminescence. Chemistry of Materials, 2019, 31, 10205-10210.	3.2	94
67	White-light phosphorescence emission from a single molecule: application to OLED. Chemical Communications, 2009, , 4672.	2.2	92
68	Stable Green Electroluminescence from an Iridium Tris-Heteroleptic Ionic Complex. Chemistry of Materials, 2012, 24, 1896-1903.	3.2	91
69	Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 214-219.	8.8	91
70	Subphthalocyanines as narrow band red-light emitting materials. Tetrahedron Letters, 2007, 48, 4657-4660.	0.7	89
71	Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Materials, 2014, 2, .	2.2	86
72	Stable and Efficient Solidâ€&tate Lightâ€Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium Complexes. Advanced Energy Materials, 2011, 1, 282-290.	10.2	84

#	Article	IF	CITATIONS
73	Shine bright or live long: substituent effects in [Cu(N^N)(P^P)] ⁺ -based light-emitting electrochemical cells where N^N is a 6-substituted 2,2′-bipyridine. Journal of Materials Chemistry C, 2016, 4, 3857-3871.	2.7	83
74	Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs. Chemical Communications, 2007, , 3276.	2.2	82
75	Recent advances in light-emitting electrochemical cells. Pure and Applied Chemistry, 2011, 83, 2115-2128.	0.9	82
76	A deep-blue emitting charged bis-cyclometallated iridium(<scp>iii</scp>) complex for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2013, 1, 58-68.	2.7	81
77	Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand. Scientific Reports, 2015, 5, 12325.	1.6	81
78	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	8.8	81
79	Improving the Turn-On Time of Light-Emitting Electrochemical Cells without Sacrificing their Stability. Chemistry of Materials, 2010, 22, 1288-1290.	3.2	80
80	[Cu(bpy)(P^P)] ⁺ containing light-emitting electrochemical cells: improving performance through simple substitution. Dalton Transactions, 2014, 43, 16593-16596.	1.6	80
81	Exceptionally long-lived light-emitting electrochemical cells: multiple intra-cation π-stacking interactions in [Ir(C^N) ₂ (N^N)][PF ₆] emitters. Chemical Science, 2015, 6, 2843-2852.	3.7	79
82	Two are not always better than one: ligand optimisation for long-living light-emitting electrochemical cells. Chemical Communications, 2009, , 2029.	2.2	78
83	Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chemical Communications, 2008, , 618-620.	2.2	77
84	Perovskite–Perovskite Homojunctions via Compositional Doping. Journal of Physical Chemistry Letters, 2018, 9, 2770-2775.	2.1	77
85	Vacuum-Deposited 2D/3D Perovskite Heterojunctions. ACS Energy Letters, 2019, 4, 2893-2901.	8.8	77
86	Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells. Chemistry of Materials, 2013, 25, 3391-3397.	3.2	76
87	Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis. Journal of Materials Chemistry A, 2015, 3, 14121-14125.	5.2	76
88	Making by Grinding: Mechanochemistry Boosts the Development of Halide Perovskites and Other Multinary Metal Halides. Advanced Energy Materials, 2020, 10, 1902499.	10.2	76
89	Dynamic Doping in Planar Ionic Transition Metal Complexâ€Based Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2013, 23, 3531-3538.	7.8	75
90	Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes. Inorganic Chemistry, 2012, 51, 2263-2271.	1.9	74

#	Article	IF	CITATIONS
91	Universal Transients in Polymer and Ionic Transition Metal Complex Light-Emitting Electrochemical Cells. Journal of the American Chemical Society, 2013, 135, 886-891.	6.6	74
92	Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 7709-7721.	1.9	72
93	Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain. ACS Applied Materials & Interfaces, 2019, 11, 23320-23328.	4.0	72
94	Light-emitting electrochemical cells based on a supramolecularly-caged phenanthroline-based iridium complex. Chemical Communications, 2011, 47, 3207.	2.2	70
95	Green Light-Emitting Solid-State Electrochemical Cell Obtained from a Homoleptic Iridium(III) Complex Containing Ionically Charged Ligands. Chemistry of Materials, 2006, 18, 2778-2780.	3.2	68
96	Host–guest blue light-emitting electrochemical cells. Journal of Materials Chemistry C, 2014, 2, 1605-1611.	2.7	68
97	Hybrid organic-inorganic light emitting diodes: effect of the metal oxide. Journal of Materials Chemistry, 2010, 20, 4047.	6.7	67
98	Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites. Chemistry of Materials, 2018, 30, 7423-7427.	3.2	67
99	Highly Stable and Efficient Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes Bearing Arylazole Ancillary Ligands. Inorganic Chemistry, 2017, 56, 10298-10310.	1.9	65
100	Effects of Masking on Open-Circuit Voltage and Fill Factor in Solar Cells. Joule, 2019, 3, 16-26.	11.7	64
101	Efficient blue emitting organic light emitting diodes based on fluorescent solution processable cyclic phosphazenes. Organic Electronics, 2008, 9, 155-163.	1.4	63
102	Pulsed-current versus constant-voltage light-emitting electrochemical cells with trifluoromethyl-substituted cationic iridium(iii) complexes. Journal of Materials Chemistry C, 2013, 1, 2241.	2.7	63
103	Highly luminescent perovskite–aluminum oxide composites. Journal of Materials Chemistry C, 2015, 3, 11286-11289.	2.7	63
104	Perovskite solar cells join the major league. Science, 2015, 350, 917-917.	6.0	63
105	Luminescent copper(<scp>i</scp>) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. Dalton Transactions, 2018, 47, 14263-14276.	1.6	63
106	Determination of electron and hole energy levels in mesoporous nanocrystalline TiO2 solid-state dye solar cell. Synthetic Metals, 2006, 156, 944-948.	2.1	62
107	Efficient orange light-emitting electrochemical cells. Journal of Materials Chemistry, 2012, 22, 19264.	6.7	62
108	Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material. Journal of Materials Chemistry A, 2019, 7, 12507-12517.	5.2	62

#	Article	IF	CITATIONS
109	Deep-Red-Emitting Electrochemical Cells Based on Heteroleptic Bis-chelated Ruthenium(II) Complexes. Inorganic Chemistry, 2009, 48, 3907-3909.	1.9	61
110	Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes. Inorganic Chemistry, 2015, 54, 5907-5914.	1.9	61
111	Peripheral halo-functionalization in [Cu(N^N)(P^P)] ⁺ emitters: influence on the performances of light-emitting electrochemical cells. Dalton Transactions, 2016, 45, 15180-15192.	1.6	61
112	Fluorine-free blue-green emitters for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2014, 2, 5793-5804.	2.7	60
113	Best practices for measuring emerging light-emitting diode technologies. Nature Photonics, 2019, 13, 818-821.	15.6	59
114	Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin, 2015, 40, 660-666.	1.7	58
115	Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence. Journal of Materials Chemistry C, 2019, 7, 11406-11410.	2.7	58
116	White Hybrid Organicâ ``Inorganic Light-Emitting Diode Using ZnO as the Air-Stable Cathode. Chemistry of Materials, 2009, 21, 439-441.	3.2	56
117	Efficient Greenâ€Lightâ€Emitting Electrochemical Cells Based on Ionic Iridium Complexes with Sulfoneâ€Containing Cyclometalating Ligands. Chemistry - A European Journal, 2013, 19, 8597-8609.	1.7	56
118	Phosphorescent Hybrid Organic–Inorganic Lightâ€Emitting Diodes. Advanced Materials, 2010, 22, 2198-2201.	11.1	55
119	Dynamic doping and degradation in sandwich-type light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2012, 14, 10886.	1.3	55
120	Tuning the photophysical properties of cationic iridium(<scp>iii</scp>) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through functionalized 2,2′-bipyridineligands: blue but not blue enough. Dalton Transactions, 2013, 42, 1073-1087.	1.6	54
121	Deep-blue thermally activated delayed fluorescence (TADF) emitters for light-emitting electrochemical cells (LEECs). Journal of Materials Chemistry C, 2017, 5, 1699-1705.	2.7	54
122	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
123	Control of charge trapping in a photorefractive polymer. Applied Physics Letters, 1995, 66, 1038-1040.	1.5	53
124	[Cu(P^P)(N^N)][PF ₆] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 8460-8471.	2.7	53
125	Red-light-emitting electrochemical cell using a polypyridyl iridium(iii) polymer. Dalton Transactions, 2009, , 9787.	1.6	52
126	Dumbbellâ€6haped Dinuclear Iridium Complexes and Their Application to Lightâ€Emitting Electrochemical Cells. Chemistry - A European Journal, 2010, 16, 9855-9863.	1.7	51

#	Article	IF	CITATIONS
127	Degradation Mechanisms in Organic Lead Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900902.	3.6	50
128	Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA _{1–<i>x</i>} MA _{<i>x</i>} Pbl ₃ . ACS Energy Letters, 2020, 5, 3053-3061.	8.8	49
129	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	5.2	48
130	Trap-limited mobility in space-charge limited current in organic layers. Organic Electronics, 2009, 10, 305-312.	1.4	47
131	Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence. Advanced Energy Materials, 2013, 3, 1338-1343.	10.2	47
132	Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chemical Communications, 2017, 53, 8707-8710.	2.2	47
133	Roomâ€Temperature Cubic Phase Crystallization and High Stability of Vacuumâ€Đeposited Methylammonium Lead Triiodide Thin Films for Highâ€Efficiency Solar Cells. Advanced Materials, 2019, 31, e1902692.	11.1	47
134	Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed OLED. Journal Physics D: Applied Physics, 2009, 42, 105106.	1.3	46
135	Luminescent osmium(<scp>ii</scp>) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in light-emitting electrochemical cells. Dalton Transactions, 2016, 45, 7748-7757.	1.6	45
136	Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium(<scp>iii</scp>) complexes bearing bisphosphine ligands. Inorganic Chemistry Frontiers, 2016, 3, 218-235.	3.0	45
137	CF ₃ Substitution of [Cu(P^P)(bpy)][PF ₆] Complexes: Effects on Photophysical Properties and Lightâ€Emitting Electrochemical Cell Performance. ChemPlusChem, 2018, 83, 217-229.	1.3	45
138	Chiral Iridium(III) Complexes in Light-Emitting Electrochemical Cells: Exploring the Impact of Stereochemistry on the Photophysical Properties and Device Performances. ACS Applied Materials & Interfaces, 2016, 8, 33907-33915.	4.0	44
139	Phosphane tuning in heteroleptic [Cu(N^N)(P^P)] ⁺ complexes for light-emitting electrochemical cells. Dalton Transactions, 2019, 48, 446-460.	1.6	44
140	Ionically Assisted Charge Injection in Hybrid Organicâ^'Inorganic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2010, 2, 2694-2698.	4.0	43
141	Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length. Journal of Materials Chemistry, 2011, 21, 1382-1386.	6.7	43
142	Dynamically Doped White Light Emitting Tandem Devices. Advanced Materials, 2014, 26, 770-774.	11.1	43
143	Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorganic Chemistry, 2016, 55, 10361-10376.	1.9	43
144	Molecular Passivation of MoO ₃ : Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6945-6949.	3.2	43

#	Article	IF	CITATIONS
145	Low-dimensional non-toxic A ₃ Bi ₂ X ₉ compounds synthesized by a dry mechanochemical route with tunable visible photoluminescence at room temperature. Journal of Materials Chemistry C, 2019, 7, 6236-6240.	2.7	43
146	Deposition Kinetics and Compositional Control of Vacuum-Processed CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 6852-6859.	2.1	43
147	Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies. Matter, 2021, 4, 3549-3584.	5.0	43
148	Ionic Iridium Complex and Conjugated Polymer Used To Solution-Process a Bilayer White Light-Emitting Diode. ACS Applied Materials & Interfaces, 2013, 5, 630-634.	4.0	42
149	Capacitance-voltage characteristics of organic light-emitting diodes varying the cathode metal: Implications for interfacial states. Physical Review B, 2007, 75, .	1.1	41
150	Chloride ion impact on materials for light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 1961-1964.	1.6	41
151	Red emitting [lr(C^N) ₂ (N^N)] ⁺ complexes employing bidentate 2,2′:6′,2′′-terpyridine ligands for light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 4653-4667.	1.6	40
152	A Deep-Red-Emitting Perylenediimideâ ``Iridium-Complex Dyad: Following the Photophysical Deactivation Pathways. Journal of Physical Chemistry C, 2009, 113, 19292-19297.	1.5	39
153	A comparative study of Ir(<scp>iii</scp>) complexes with pyrazino[2,3- <i>f</i>][1,10]phenanthroline and pyrazino[2,3- <i>f</i>][4,7]phenanthroline ligands in light-emitting electrochemical cells (LECs). Dalton Transactions, 2015, 44, 14771-14781.	1.6	39
154	Blue-emitting cationic iridium(iii) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 2017, 5, 9638-9650.	2.7	39
155	Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide perovskites?. Journal of Applied Physics, 2018, 124, .	1.1	39
156	Influence of hole transport material ionization energy on the performance of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 523-527.	2.7	39
157	An inconvenient influence of iridium(iii) isomer on OLED efficiency. Dalton Transactions, 2010, 39, 8914.	1.6	38
158	Bright and stable light-emitting electrochemical cells based on an intramolecularly π-stacked, 2-naphthyl-substituted iridium complex. Journal of Materials Chemistry C, 2014, 2, 7047-7055.	2.7	38
159	Solution processable high band gap hosts based on carbazole functionalized cyclic phosphazene cores for application in organic lightâ€emitting diodes. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 531-539.	2.4	37
160	Efficient, Cyanine Dye Based Bilayer Solar Cells. Advanced Energy Materials, 2013, 3, 472-477.	10.2	37
161	Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2017, 56, 10584-10595.	1.9	36
162	Molecular Iodine for a General Synthesis of Binary and Ternary Inorganic and Hybrid Organic–Inorganic Iodide Nanocrystals. Chemistry of Materials, 2018, 30, 6915-6921.	3.2	36

#	Article	IF	CITATIONS
163	Thienylpyridine-based cyclometallated iridium(<scp>iii</scp>) complexes and their use in solid state light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 738-750.	1.6	35
164	Lithium salt additives and the influence of their counterion on the performances of light-emitting electrochemical cells. Journal of Materials Chemistry C, 2016, 4, 10781-10785.	2.7	35
165	Transient behavior of photorefractive gratings in a polymer. Applied Physics Letters, 1995, 67, 455-457.	1.5	34
166	Effect of free rotation in polypyridinic ligands of Ru(ii) complexes applied in light-emitting electrochemical cells. Dalton Transactions, 2013, 42, 15502.	1.6	34
167	Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical, and Electrical Properties. Energy Technology, 2020, 8, 1900788.	1.8	34
168	Effect of Plasticization on the Performance of a Photorefractive Polymer. The Journal of Physical Chemistry, 1996, 100, 16356-16360.	2.9	32
169	Room-Temperature Vacuum Deposition of CsPbl ₂ Br Perovskite Films from Multiple Sources and Mixed Halide Precursors. Chemistry of Materials, 2020, 32, 8641-8652.	3.2	32
170	PEDOT:Poly(1â€vinylâ€3â€ethylimidazolium) dispersions as alternative materials for optoelectronic devices. Journal of Polymer Science Part A, 2008, 46, 3150-3154.	2.5	31
171	Emission energy of azole-based ionic iridium(<scp>iii</scp>) complexes: a theoretical study. Dalton Transactions, 2015, 44, 8497-8505.	1.6	31
172	Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods. Journal of Materials Chemistry A, 2019, 7, 14712-14722.	5.2	31
173	Photorefractive polymer composite with net gain and subsecond response at 633 nm. Applied Physics Letters, 1994, 65, 262-264.	1.5	30
174	Simple design to achieve red-to-near-infrared emissive cationic lr(<scp>iii</scp>) emitters and their use in light emitting electrochemical cells. RSC Advances, 2017, 7, 31833-31837.	1.7	30
175	Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells. ACS Energy Letters, 2018, 3, 835-839.	8.8	30
176	Colour tuning by the ring roundabout: [Ir(C^N) ₂ (N^N)] ⁺ emitters with sulfonyl-substituted cyclometallating ligands. RSC Advances, 2015, 5, 42815-42827.	1.7	29
177	Pulsed Laser Deposition of Cs ₂ AgBiBr ₆ : from Mechanochemically Synthesized Powders to Dry, Single-Step Deposition. Chemistry of Materials, 2021, 33, 7417-7422.	3.2	29
178	p–n Metallophosphor based on cationic iridium(iii) complex for solid-state light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 13999.	6.7	28
179	Ionic liquid modified zinc oxide injection layer for inverted organic light-emitting diodes. Organic Electronics, 2013, 14, 164-168.	1.4	28
180	Efficient wide band gap double cation – double halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3203-3207.	5.2	28

#	Article	IF	CITATIONS
181	Wide-Bite-Angle Diphosphine Ligands in Thermally Activated Delayed Fluorescent Copper(I) Complexes: Impact on the Performance of Electroluminescence Applications. Inorganic Chemistry, 2021, 60, 10323-10339.	1.9	28
182	Holographic time-of-flight measurements of the hole-drift mobility in a photorefractive polymer. Physical Review B, 1995, 52, R14324-R14327.	1.1	27
183	Relaxation of Photogenerated Carriers in P3HT:PCBM Organic Blends. ChemSusChem, 2009, 2, 314-320.	3.6	27
184	Efficient Light-Emitting Electrochemical Cells Using Small Molecular Weight, Ionic, Host-Guest Systems. ECS Journal of Solid State Science and Technology, 2016, 5, R3160-R3163.	0.9	27
185	Highly Photoluminescent Blue Ionic Platinum-Based Emitters. Inorganic Chemistry, 2020, 59, 1145-1152.	1.9	27
186	Evidence of band bending induced by hole trapping at MAPbI ₃ perovskite/metal interface. Journal of Materials Chemistry A, 2016, 4, 17529-17536.	5.2	26
187	Novel Bifunctional Molecule for Photorefractive Materials. Chemistry of Materials, 1997, 9, 1407-1413.	3.2	25
188	Determination of charge carrier mobility of hole transporting polytriarylamine-based diodes. Thin Solid Films, 2010, 518, 3351-3354.	0.8	24
189	Operational Mechanism of Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2014, 136, 8500-8503.	6.6	24
190	Short Photoluminescence Lifetimes in Vacuum-Deposited CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. Journal of Physical Chemistry Letters, 2019, 10, 5167-5172.	2.1	24
191	Guideline for Optical Optimization of Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900944.	3.6	24
192	FAPb 0.5 Sn 0.5 I 3 : A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications. Solar Rrl, 2020, 4, 1900283.	3.1	24
193	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition. ACS Energy Letters, 2022, 7, 1355-1363.	8.8	24
194	Thickness scaling of space-charge-limited currents in organic layers with field- or density-dependent mobility. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3762-3767.	0.8	23
195	Meniscus coated high open-circuit voltage bi-layer solar cells. RSC Advances, 2012, 2, 3335.	1.7	23
196	Efficient Photo- and Electroluminescence by Trap States Passivation in Vacuum-Deposited Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 36187-36193.	4.0	23
197	Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers. ACS Applied Materials & Interfaces, 2018, 10, 41586-41591.	4.0	23
198	Synthesis and luminescence of poly(phenylacetylene)s with pendant iridium complexes and carbazole groups. Journal of Polymer Science Part A, 2010, 48, 3744-3757.	2.5	22

#	Article	IF	CITATIONS
199	Ionic Space-Charge Effects in Solid State Organic Photovoltaics. ACS Applied Materials & Interfaces, 2010, 2, 3664-3668.	4.0	22
200	Dual-Emitting Langmuirâ `'Blodgett Film-Based Organic Light-Emitting Diodes. Langmuir, 2010, 26, 11461-11468.	1.6	22
201	Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cells. Organic Electronics, 2013, 14, 523-534.	1.4	22
202	Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing. Journal of Materials Chemistry C, 2014, 2, 10277-10281.	2.7	22
203	White Light-Emitting Electrochemical Cells Based on the Langmuir–Blodgett Technique. Langmuir, 2014, 30, 14021-14029.	1.6	22
204	Optimization of Polymer Blue-Light-Emitting Devices by Introducing a Hole-Injection Layer Doped with the Molecular Nanomagnet [Mn12O12(H2O)4(C6F5COO)16]. Advanced Materials, 2006, 18, 920-923.	11.1	21
205	Impedance of space-charge-limited currents in organic light-emitting diodes with double injection and strong recombination. Journal of Applied Physics, 2006, 100, 084502.	1.1	21
206	Soret emission from water-soluble porphyrin thin films: effect on the electroluminescence response. Journal of Materials Chemistry, 2009, 19, 4255.	6.7	21
207	Engineering Charge Injection Interfaces in Hybrid Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2014, 6, 19520-19524.	4.0	21
208	Regioisomerism in cationic sulfonyl-substituted [Ir(C^N) ₂ (N^N)] ⁺ complexes: its influence on photophysical properties and LEC performance. Dalton Transactions, 2016, 45, 11668-11681.	1.6	21
209	Incorporation of potassium halides in the mechanosynthesis of inorganic perovskites: feasibility and limitations of ion-replacement and trap passivation. RSC Advances, 2018, 8, 41548-41551.	1.7	21
210	Large area perovskite light-emitting diodes by gas-assisted crystallization. Journal of Materials Chemistry C, 2019, 7, 3795-3801.	2.7	21
211	Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8257-8265.	2.5	21
212	Potential and limitations of CsBi3I10 as a photovoltaic material. Journal of Materials Chemistry A, 2020, 8, 15670-15674.	5.2	21
213	An Ester‧ubstituted Iridium Complex for Efficient Vacuumâ€Processed Organic Lightâ€Emitting Diodes. ChemSusChem, 2009, 2, 305-308.	3.6	20
214	Zinc oxide nanocrystals as electron injecting building blocks for plastic light sources. Journal of Materials Chemistry, 2012, 22, 4916.	6.7	20
215	Perovskite Luminescent Materials. Topics in Current Chemistry, 2016, 374, 52.	3.0	20
216	Charge Noise in Organic Electrochemical Transistors. Physical Review Applied, 2017, 7, .	1.5	20

#	Article	IF	CITATIONS
217	A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 12948-12954.	2.7	20
218	Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–l–N Vacuumâ€Processed MAPbI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000065.	2.8	20
219	Perimeter leakage current in polymer light emitting diodes. Current Applied Physics, 2009, 9, 414-416.	1.1	19
220	Molecular Engineering of Iridium Blue Emitters Using Aryl N-Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 5089-5097.	1.0	19
221	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	1.4	19
222	Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 2016, 4, 18614-18620.	5.2	19
223	Pyrene-fused bisphenazinothiadiazoles with red to NIR electroluminescence. Organic Chemistry Frontiers, 2017, 4, 876-881.	2.3	19
224	Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material. RSC Advances, 2018, 8, 35719-35723.	1.7	19
225	Solution, structural and photophysical aspects of substituent effects in the N^N ligand in [Ir(C^N)2(N^N)]+ complexes. Dalton Transactions, 2013, 42, 8086.	1.6	18
226	Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes. Organic Electronics, 2016, 30, 36-39.	1.4	18
227	Impact of the use of sterically congested Ir(<scp>iii</scp>) complexes on the performance of light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 6385-6397.	2.7	18
228	The shiny side of copper: bringing copper(<scp>i</scp>) light-emitting electrochemical cells closer to application. RSC Advances, 2020, 10, 22631-22644.	1.7	18
229	Tuning the Optical Absorption of Sn-, Ge-, and Zn-Substituted Cs ₂ AgBiBr ₆ Double Perovskites: Structural and Electronic Effects. Chemistry of Materials, 2021, 33, 8028-8035.	3.2	18
230	Lowest triplet excited states of a novel heteroleptic iridium(III) complex and their role in the emission colour. Computational and Theoretical Chemistry, 2009, 912, 21-26.	1.5	17
231	Fine-Tuning of Photophysical and Electronic Properties of Materials for Photonic Devices Through Remote Functionalization. European Journal of Inorganic Chemistry, 2012, 2012, 3780-3788.	1.0	17
232	Twisted hexaazatrianthrylene: synthesis, optoelectronic properties and near-infrared electroluminescent heterojunctions thereof. Journal of Materials Chemistry C, 2015, 3, 9170-9174.	2.7	17
233	Self-absorption in a light-emitting electrochemical cell based on an ionic transition metal complex. Applied Physics Letters, 2015, 106, 103502.	1.5	17
234	Zero-Dimensional Hybrid Organic–Inorganic Lead Halides and Their Post-Synthesis Reversible Transformation into Three-Dimensional Perovskites. Inorganic Chemistry, 2021, 60, 5212-5216.	1.9	17

#	Article	IF	CITATIONS
235	A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6′-dimethyl-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. Dalton Transactions, 2021, 50, 17920-17934.	1.6	17
236	Hovering solar cells. Nature Materials, 2015, 14, 964-966.	13.3	16
237	Influence of doped charge transport layers on efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2429-2434.	2.5	16
238	Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids. Advanced Optical Materials, 2020, 8, 1901494.	3.6	16
239	Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 2755-2761.	2.5	16
240	Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization. Frontiers in Chemistry, 2019, 7, 936.	1.8	16
241	Conductive Hybrid Films of Polyarylamine Electrochemically Oxidized with the Molecular Nanomagnet [Mn12O12(H2O)4-(C6F5COO)16]. Advanced Materials, 2005, 17, 1018-1023.	11.1	15
242	Interpretation of capacitance spectra and transit times of single carrier space-charge limited transport in organic layers with field-dependent mobility. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2402-2410.	0.8	15
243	Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles. Chemical Communications, 2016, 52, 11351-11354.	2.2	15
244	High Photoluminescence Quantum Yields in Organic Semiconductor–Perovskite Composite Thin Films. ChemSusChem, 2017, 10, 3788-3793.	3.6	15
245	Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[<i>d</i>]thiazole-containing iridium(<scp>iii</scp>) complexes for stable light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 12679-12688.	2.7	15
246	External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells. Journal of Applied Physics, 2020, 127, .	1.1	15
247	Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines. Journal of Materials Chemistry C, 2020, 8, 1902-1908.	2.7	15
248	Molecular organization of a water-insoluble iridium(III) complex in mixed monolayers. Journal of Colloid and Interface Science, 2007, 315, 278-286.	5.0	14
249	Perovskite Solar Cells: Stable under Space Conditions. Solar Rrl, 2020, 4, 2000447.	3.1	14
250	SiPMs coated with TPB: coating protocol and characterization for NEXT. Journal of Instrumentation, 2012, 7, P02010-P02010.	0.5	13
251	Hansen theory applied to the identification of nonhazardous solvents for hybrid perovskite thin-films processing. Polyhedron, 2018, 147, 9-14.	1.0	13
252	Electrothermal Feedback and Absorption-Induced Open-Circuit-Voltage Turnover in Solar Cells. Physical Review Applied, 2018, 9, .	1.5	13

#	Article	IF	CITATIONS
253	Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale, 2019, 11, 12793-12797.	2.8	13
254	Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices. Dalton Transactions, 2019, 48, 30-34.	1.6	13
255	High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers. RSC Advances, 2020, 10, 6640-6646.	1.7	13
256	Wafer-scale pulsed laser deposition of ITO for solar cells: reduced damage <i>vs.</i> interfacial resistance. Materials Advances, 2022, 3, 3469-3478.	2.6	13
257	Preparation and Characterization of Mixed Halide MAPbl _{3â^'<i>x</i>} Cl _{<i>x</i>} Perovskite Thin Films by Threeâ€6ource Vacuum Deposition. Energy Technology, 2020, 8, 1900784.	1.8	12
258	Remote Modification of Bidentate Phosphane Ligands Controlling the Photonic Properties in Their Complexes: Enhanced Performance of [Cu(RNâ€xantphos)(N ^ N)][PF 6] in Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2020, 8, 1901689.	3.6	12
259	Semitransparent near-infrared Sn–Pb hybrid perovskite photodetectors. Journal of Materials Chemistry C, 2022, 10, 13878-13885.	2.7	12
260	ITO Topâ€Electrodes via Industrialâ€Scale PLD for Efficient Bufferâ€Layerâ€Free Semitransparent Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, .	3.0	12
261	Polymers containing nonlinear optical groups in the main chain. Second harmonic generation in corona poled thin films. European Polymer Journal, 1993, 29, 981-986.	2.6	11
262	The role of absorbing nonlinear optical chromophores in photorefractive polymers. Advanced Materials, 1994, 6, 574-577.	11.1	11
263	Improving the efficiency of light-emitting diode based on a thiophene polymer containing a cyano group. Organic Electronics, 2007, 8, 641-647.	1.4	11
264	Spontaneous Self-Assembly of a 1,8-Naphthyridine into Diverse Crystalline 1D Nanostructures: Implications on the Stimuli-Responsive Luminescent Behaviour. Crystal Growth and Design, 2014, 14, 3849-3856.	1.4	11
265	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
266	Stable Lightâ€Emitting Electrochemical Cells Using Hyperbranched Polymer Electrolyte. Advanced Functional Materials, 2021, 31, 2104249.	7.8	11
267	Extended liquid-crystalline oligofluorenes with photo- and electroluminescence. New Journal of Chemistry, 2010, 34, 2785.	1.4	10
268	Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition. Nanoscale Research Letters, 2013, 8, 135.	3.1	10
269	Polymorphism-Triggered Reversible Thermochromic Fluorescence of a Simple 1,8-Naphthyridine. Crystal Growth and Design, 2013, 13, 460-464.	1.4	10
270	Bisâ€Sulfone―and Bisâ€Sulfoxideâ€Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blueâ€Phosphorescent Lightâ€Emitting Devices. European Journal of Organic Chemistry, 2016, 2016, 2037-2047.	1.2	10

#	Article	IF	CITATIONS
271	Luminescence: The Never-Ending Story. Topics in Current Chemistry, 2016, 374, 44.	3.0	10
272	Effect of the precursor's stoichiometry on the optoelectronic properties of methylammonium lead bromide perovskites. Journal of Luminescence, 2017, 189, 120-125.	1.5	10
273	Radiative and non-radiative losses by voltage-dependent in-situ photoluminescence in perovskite solar cell current-voltage curves. Journal of Luminescence, 2020, 222, 117106.	1.5	10
274	Millisecond radiative recombination in poly(phenylene vinylene)-based light-emitting diodes from transient electroluminescence. Journal of Applied Physics, 2007, 101, 114506.	1.1	9
275	Segregation of lipid in Ir-dye/DMPA mixed monolayers as strategy to fabricate 2D supramolecular nanostructures at the air–water interface. Journal of Materials Chemistry, 2008, 18, 1681.	6.7	9
276	Molecular Ionic Junction for Enhanced Electronic Charge Transfer. Langmuir, 2009, 25, 79-83.	1.6	9
277	Combined thermal evaporated and solution processed organic light emitting diodes. Organic Electronics, 2011, 12, 1644-1648.	1.4	9
278	A Novel Polyaryl Ether Based Photorefractive Composite. Chemistry of Materials, 1998, 10, 3951-3957.	3.2	8
279	Charge injection in organic light emitting diodes governed by interfacial states. , 2006, , .		8
280	Solution-processed bi-layer polythiophene–fullerene organic solar cells. RSC Advances, 2013, 3, 25197.	1.7	8
281	Controlling the dynamic behavior of light emitting electrochemical cells. Organic Electronics, 2013, 14, 693-698.	1.4	8
282	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanoscale, 2021, 13, 8893-8900.	2.8	8
283	Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	8
284	Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides. Molecules, 2022, 27, 4261.	1.7	8
285	Pyridine-Incorporated Dihexylquaterthiophene: A Novel Blue Emitter for Organic Light Emitting Diodes (OLEDs). Australian Journal of Chemistry, 2012, 65, 1244.	0.5	7
286	Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization. Chemical Communications, 2014, 50, 11020-11022.	2.2	7
287	[Ir(C^N) ₂ (N^N)] ⁺ emitters containing a naphthalene unit within a linker between the two cyclometallating ligands. Dalton Transactions, 2016, 45, 16379-16392.	1.6	7
288	Red Light-Emitting Electrochemical Cells Employing Pyridazine-Bridged Cationic Diiridium Complexes. ECS Journal of Solid State Science and Technology, 2019, 8, R84-R87.	0.9	7

#	Article	IF	CITATIONS
289	Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet. Journal of Applied Physics, 2008, 103, .	1.1	6
290	Dynamic Doping in Bright and Stable Light Emitting Electrochemical Cell. Journal of Nanoscience and Nanotechnology, 2013, 13, 5170-5174.	0.9	6
291	Tuning the Self-Assembly of Rectangular Amphiphilic Cruciforms. Langmuir, 2014, 30, 5957-5964.	1.6	6
292	Light-emitting fabrics. Nature Photonics, 2015, 9, 211-212.	15.6	6
293	Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682.	1.6	6
294	Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n–i–p perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25796-25801.	5.2	6
295	Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 5017-5023.	2.5	6
296	Tunable luminescent lead bromide complexes. Journal of Materials Chemistry C, 2020, 8, 15996-16000.	2.7	6
297	Tunable Wideâ€Bandgap Monohalide Perovskites. Advanced Optical Materials, 2020, 8, 2000423.	3.6	6
298	Assigning ionic properties in perovskite solar cells; a unifying transient simulation/experimental study. Sustainable Energy and Fuels, 2021, 5, 3578-3587.	2.5	6
299	Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices. ACS Photonics, 2021, 8, 2067-2073.	3.2	6
300	Inverted solution processable OLEDs using a metal oxide as electron injection contact. Proceedings of SPIE, 2008, , .	0.8	5
301	Dipole reorientation and local density of optical states influence the emission of light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2020, 22, 92-96.	1.3	5
302	Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment. Solar Rrl, 2021, 5, 2100400.	3.1	5
303	Passive-matrix polymer light-emitting displays. Journal of the Society for Information Display, 2003, 11, 155.	0.8	4
304	Optimizing the Performance of Metal Grid Conductors for Light-Emitting Electrochemical Cell Devices by Modifying Printing Conditions. Journal of Imaging Science and Technology, 2014, 58, 305031-3050310.	0.3	4
305	Efficient, 23%, Solution-Processed Perovskite Tandem Cells. Joule, 2019, 3, 2069-2070.	11.7	4
306	Use of Hydrogen Molybdenum Bronze in Vacuumâ€Deposited Perovskite Solar Cells. Energy Technology, 2020, 8, 1900734.	1.8	4

#	Article	IF	CITATIONS
307	Photorefractivity in poly(N-vinylcarbazole)-based polymer composites. Journal of Optics, 1996, 5, 631-643.	0.5	3
308	Incorporation of a tricationic subphthalocyanine in an organic photovoltaic device. Journal of Porphyrins and Phthalocyanines, 2013, 17, 1016-1021.	0.4	3
309	Dimensionality Controls Anion Intermixing in Electroluminescent Perovskite Heterojunctions. ACS Photonics, 2022, 9, 2483-2488.	3.2	3
310	Photorefractive polymer materials. Proceedings of SPIE, 1993, , .	0.8	2
311	<title>Transient photorefractive gratings in polymers</title> . , 1995, , .		2
312	<title>Space-charge field formation in poly(N-vinylcarbazole)-based photorefractive composites</title> . , 1996, 2850, 24.		2
313	Solid-State Lighting: Simple, Fast, Bright, and Stable Light Sources (Adv. Mater. 7/2012). Advanced Materials, 2012, 24, 854-854.	11.1	2
314	CF3 Substitution of [Cu(P^P)(bpy)][PF6] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance. ChemPlusChem, 2018, 83, 143-143.	1.3	2
315	Low Temperature, Vacuumâ€Processed Bismuth Triiodide Solar Cells with Organic Smallâ€Molecule Hole Transport Bilayer. Energy Technology, 2021, 9, 2100661.	1.8	2
316	Polymerâ€Based Composites for Engineering Organic Memristive Devices. Advanced Electronic Materials, 0, , 2101192.	2.6	2
317	Density of states within the bandgap of perovskite thin films studied using the moving grating technique. Journal of Chemical Physics, 2022, 156, 114201.	1.2	2
318	<title>Charge trapping in photorefractive polymers</title> ., 1995,,.		1
319	Status of red, green and blue light emitting polymers for passive matrix displays. , 2003, , .		1
320	Effect of conductivity of hole injection layer on the performance of a blue light emitting solution processable OLED. , 2005, , .		1
321	Corrosion Resistance, Morphological and Electrical Properties of Electroless Ni-Mo-P Thin Films Deposited on Ceramic and Kapton Substrates. ECS Transactions, 2009, 25, 81-88.	0.3	1
322	Towards efficient next generation light sources: combined solution processed and evaporated layers for OLEDs. , 2010, , .		1
323	Tetra-alkoxy substituted PPV derivatives: a new class of highly soluble liquid crystalline conjugated polymers. Polymer Chemistry, 2011, 2, 1279.	1.9	1
324	Ionic high-performance light harvesting and carrier transporting OPV materials. , 2013, , .		1

#	Article	IF	CITATIONS
325	Preface to Special Issue of Energy Technology on Perovskite Optoelectronics. Energy Technology, 2017, 5, 1731-1733.	1.8	1
326	Simple approach for an electron extraction layer in an all-vacuum processed n-i-p perovskite solar cell. Energy Advances, 2022, 1, 252-257.	1.4	1
327	<title>Photorefractive host-guest systems and fully functionalized polymers</title> . , 1995, 2526, 138.		0
328	<title>Control of charge trapping in a novel photorefractive composite consisting of a bifunctional molecule based on TPD</title> . , 1996, , .		0
329	Photorefractive polymers with low intrinsic trap density. Proceedings of SPIE, 1997, , .	0.8	0
330	Cathode effect on current-voltage characteristics of blue light-emitting diodes based on a polyspirofluorene. , 2008, , .		0
331	Unexpected large spectral shift from blue to green region in a light-emitting electrochemical cell. , 2008, , .		0
332	Long-Living Emitting Electrochemical Cells Based on Supramolecular π-π Interactions. Materials Research Society Symposia Proceedings, 2009, 1197, 31.	0.1	0
333	Low Cost Hybrid Solar Cell Integration on Wall Tiles. ECS Transactions, 2011, 41, 141-146.	0.3	0
334	Meniscus coated high open-circuit voltage bi-layer solar cells. , 2012, , .		0
335	In situ photoluminescence spectroscopy study of dynamic doping in sandwich-type light-emitting electrochemical cells. , 2012, , .		0
336	Influence of the cyanine counter anions on a bi-layer solar cell performance. Materials Research Society Symposia Proceedings, 2013, 1493, 275-280.	0.1	0
337	Increasing the efficiency of light-emitting electrochemical cells by limiting the exciton quenching. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	0
338	Temperature Effect of Ionic Transition Metal Complex Light-Emitting Electrochemical Cells. Materials Research Society Symposia Proceedings, 2013, 1567, 1.	0.1	0
339	Preface to Special Issue of ChemSusChem on Perovskite Optoelectronics. ChemSusChem, 2017, 10, 3684-3686.	3.6	0
340	Tandems in the thick of it. Nature Energy, 2018, 3, 1027-1028.	19.8	0
341	Single Molecule Solid State Light Emitting Electrochemical Cells with Lifetimes Superior to 3000 Hours. , 2008, , .		Ο