Richard L Huganir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2290681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAPK cascade signalling and synaptic plasticity. Nature Reviews Neuroscience, 2004, 5, 173-183.	10.2	1,264
2	Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 2000, 405, 955-959.	27.8	996
3	The Cell Biology of Synaptic Plasticity: AMPA Receptor Trafficking. Annual Review of Cell and Developmental Biology, 2007, 23, 613-643.	9.4	849
4	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	27.8	835
5	GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature, 1997, 386, 279-284.	27.8	812
6	AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron, 2013, 80, 704-717.	8.1	797
7	PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neuroscience, 2003, 6, 136-143.	14.8	767
8	Phosphorylation of the AMPA Receptor GluR1 Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory. Cell, 2003, 112, 631-643.	28.9	699
9	Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking. Neuron, 2006, 52, 445-459.	8.1	691
10	Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors. Neuron, 2006, 52, 475-484.	8.1	684
11	NMDA Induces Long-Term Synaptic Depression and Dephosphorylation of the GluR1 Subunit of AMPA Receptors in Hippocampus. Neuron, 1998, 21, 1151-1162.	8.1	617
12	Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation. Neuron, 1998, 21, 1067-1078.	8.1	606
13	SynGAP: a Synaptic RasGAP that Associates with the PSD-95/SAP90 Protein Family. Neuron, 1998, 20, 683-691.	8.1	585
14	The AMPA Receptor Code of Synaptic Plasticity. Neuron, 2018, 100, 314-329.	8.1	567
15	Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 1999, 402, 669-671.	27.8	538
16	Clustering of AMPA Receptors by the Synaptic PDZ Domain–Containing Protein PICK1. Neuron, 1999, 22, 179-187.	8.1	523
17	Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience, 1999, 2, 352-357.	14.8	519
18	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518

#	Article	IF	CITATIONS
19	Phosphorylation of the AMPA Receptor Subunit GluR2 Differentially Regulates Its Interaction with PDZ Domain-Containing Proteins. Journal of Neuroscience, 2000, 20, 7258-7267.	3.6	509
20	Regulation of AMPA receptor trafficking and synaptic plasticity. Current Opinion in Neurobiology, 2012, 22, 461-469.	4.2	479
21	Postsynaptic organisation and regulation of excitatory synapses. Nature Reviews Neuroscience, 2000, 1, 133-141.	10.2	433
22	Surface Mobility of Postsynaptic AMPARs Tunes Synaptic Transmission. Science, 2008, 320, 201-205.	12.6	433
23	Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell, 2016, 166, 1163-1175.e12.	28.9	428
24	Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature, 1993, 364, 70-73.	27.8	420
25	Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science, 2017, 355, 511-515.	12.6	398
26	Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II. Journal of Biological Chemistry, 1997, 272, 32528-32533.	3.4	382
27	Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neuroscience, 1999, 2, 37-43.	14.8	365
28	Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity. Neuron, 2007, 55, 919-929.	8.1	363
29	Synaptic Incorporation of AMPA Receptors during LTP Is Controlled by a PKC Phosphorylation Site on GluR1. Neuron, 2006, 51, 213-225.	8.1	324
30	Requirement of AMPA Receptor GluR2 Phosphorylation for Cerebellar Long-Term Depression. Science, 2003, 300, 1751-1755.	12.6	320
31	Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nature Neuroscience, 2009, 12, 879-887.	14.8	317
32	Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature, 1993, 361, 637-641.	27.8	288
33	PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature, 2013, 493, 420-423.	27.8	278
34	Targeted In Vivo Mutations of the AMPA Receptor Subunit GluR2 and Its Interacting Protein PICK1 Eliminate Cerebellar Long-Term Depression. Neuron, 2006, 49, 845-860.	8.1	266
35	Coexistence of Two Forms of LTP in ACC Provides a Synaptic Mechanism for the Interactions between Anxiety and Chronic Pain. Neuron, 2015, 85, 377-389.	8.1	261
36	Activation of Silent Synapses by Rapid Activity-Dependent Synaptic Recruitment of AMPA Receptors. Journal of Neuroscience, 2001, 21, 6008-6017.	3.6	250

#	Article	IF	CITATIONS
37	Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nature Neuroscience, 2011, 14, 727-735.	14.8	241
38	Biochemical Characterization and Localization of a Non-N-Methyl-D-Aspartate Glutamate Receptor in Rat Brain. Journal of Neurochemistry, 1992, 58, 1118-1126.	3.9	237
39	Phosphorylation of ligandâ€gated ion channels: a possible mode of synaptic plasticity. FASEB Journal, 1992, 6, 2514-2523.	0.5	230
40	SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4344-4351.	7.1	228
41	Calcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF. Neuron, 2005, 45, 903-915.	8.1	227
42	Specific Roles of AMPA Receptor Subunit GluR1 (GluA1) Phosphorylation Sites in Regulating Synaptic Plasticity in the CA1 Region of Hippocampus. Journal of Neurophysiology, 2010, 103, 479-489.	1.8	223
43	The Role of Synaptic GTPase-Activating Protein in Neuronal Development and Synaptic Plasticity. Journal of Neuroscience, 2003, 23, 1119-1124.	3.6	213
44	Rapid Dispersion of SynGAP from Synaptic Spines Triggers AMPA Receptor Insertion and Spine Enlargement during LTP. Neuron, 2015, 85, 173-189.	8.1	211
45	Glutamate Synapses in Human Cognitive Disorders. Annual Review of Neuroscience, 2015, 38, 127-149.	10.7	206
46	Glutamate Receptor Subunit 2 Serine 880 Phosphorylation Modulates Synaptic Transmission and Mediates Plasticity in CA1 Pyramidal Cells. Journal of Neuroscience, 2003, 23, 9220-9228.	3.6	202
47	Generation of Two Forms of the ?-Aminobutyric AcidAReceptor ?-2-Subunit in Mice by Alternative Splicing. Journal of Neurochemistry, 1991, 56, 713-715.	3.9	195
48	Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron, 2016, 90, 245-260.	8.1	195
49	Redistribution and Stabilization of Cell Surface Glutamate Receptors during Synapse Formation. Journal of Neuroscience, 1997, 17, 7351-7358.	3.6	193
50	Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. Cell Metabolism, 2018, 28, 588-604.e5.	16.2	180
51	Tyrosine Phosphorylation and Regulation of the AMPA Receptor by Src Family Tyrosine Kinases. Journal of Neuroscience, 2004, 24, 6152-6160.	3.6	167
52	Arc-dependent synapse-specific homeostatic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 816-821.	7.1	165
53	Palmitoylation by DHHC5/8 Targets GRIP1 to Dendritic Endosomes to Regulate AMPA-R Trafficking. Neuron, 2012, 73, 482-496.	8.1	155
54	PICK1 and Phosphorylation of the Glutamate Receptor 2 (GluR2) AMPA Receptor Subunit Regulates GluR2 Recycling after NMDA Receptor-Induced Internalization. Journal of Neuroscience, 2007, 27, 13903-13908.	3.6	150

#	Article	IF	CITATIONS
55	Loss of Î-catenin function in severe autism. Nature, 2015, 520, 51-56.	27.8	145
56	Visualization of NMDA receptor–dependent AMPA receptor synaptic plasticity in vivo. Nature Neuroscience, 2015, 18, 402-407.	14.8	143
57	Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature, 1992, 356, 350-352.	27.8	138
58	PKA-GluA1 Coupling via AKAP5 Controls AMPA Receptor Phosphorylation and Cell-Surface Targeting during Bidirectional Homeostatic Plasticity. Neuron, 2014, 84, 790-805.	8.1	129
59	Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA. Neuron, 2011, 71, 1022-1029.	8.1	125
60	The nutrient sensor OGT in PVN neurons regulates feeding. Science, 2016, 351, 1293-1296.	12.6	124
61	Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3827-E3836.	7.1	122
62	Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nature Cell Biology, 2018, 20, 1215-1225.	10.3	112
63	Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation. Cell Reports, 2015, 10, 783-795.	6.4	108
64	Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 413-418.	7.1	100
65	PICK1 Loss of Function Occludes Homeostatic Synaptic Scaling. Journal of Neuroscience, 2011, 31, 2188-2196.	3.6	96
66	Twenty Years of SynGAP Research: From Synapses to Cognition. Journal of Neuroscience, 2020, 40, 1596-1605.	3.6	96
67	The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nature Communications, 2015, 6, 6504.	12.8	93
68	Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell, 2016, 19, 95-106.	11.1	91
69	S-nitrosylation of AMPA receptor GluA1 regulates phosphorylation, single-channel conductance, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1077-1082.	7.1	86
70	Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity. PLoS ONE, 2011, 6, e18264.	2.5	85
71	Cortical Synaptic AMPA Receptor Plasticity during Motor Learning. Neuron, 2020, 105, 895-908.e5.	8.1	85
72	Postsynaptic Potentiation of Corticospinal Projecting Neurons in the Anterior Cingulate Cortex after Nerve Injury. Molecular Pain, 2014, 10, 1744-8069-10-33.	2.1	84

#	Article	IF	CITATIONS
73	Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine. Science Signaling, 2016, 9, ra123.	3.6	82
74	Adrenergic Gating of Hebbian Spike-Timing-Dependent Plasticity in Cortical Interneurons. Journal of Neuroscience, 2013, 33, 13171-13178.	3.6	80
75	Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nature Neuroscience, 2015, 18, 376-378.	14.8	80
76	Extensive phosphorylation of AMPA receptors in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4920-7.	7.1	79
77	Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11840-11845.	7.1	77
78	Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21784-21789.	7.1	75
79	GluA1 Phosphorylation Contributes to Postsynaptic Amplification of Neuropathic Pain in the Insular Cortex. Journal of Neuroscience, 2014, 34, 13505-13515.	3.6	75
80	Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4920-4925.	7.1	74
81	Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO Journal, 2008, 27, 361-372.	7.8	71
82	O-GlcNAc transferase regulates excitatory synapse maturity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1684-1689.	7.1	71
83	BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. Journal of Proteome Research, 2018, 17, 759-769.	3.7	70
84	The Glutamate Receptor-Interacting Protein Family of GluR2-Binding Proteins Is Required for Long-Term Synaptic Depression Expression in Cerebellar Purkinje Cells. Journal of Neuroscience, 2008, 28, 5752-5755.	3.6	68
85	PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13976-13981.	7.1	68
86	Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans. Learning and Memory, 2014, 21, 338-341.	1.3	68
87	Neuropilin-2/PlexinA3 Receptors Associate with GluA1 and Mediate Sema3F-Dependent Homeostatic Scaling in Cortical Neurons. Neuron, 2017, 96, 1084-1098.e7.	8.1	68
88	Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron, 2018, 98, 783-800.e4.	8.1	68
89	Immunological detection of glutamate receptor subtypes in human central nervous system. Annals of Neurology, 1992, 31, 680-683.	5.3	65
90	Enhanced synaptic plasticity in mice with phosphomimetic mutation of the GluA1 AMPA receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8450-8455.	7.1	65

#	Article	IF	CITATIONS
91	GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19038-19043.	7.1	64
92	An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nature Chemical Biology, 2021, 17, 39-46.	8.0	61
93	SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. ELife, 2020, 9, .	6.0	60
94	Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Molecular Brain, 2014, 7, 76.	2.6	59
95	Immunocytochemical localization of the mGluR1? metabotropic glutamate receptor in the dorsal cochlear nucleus. , 1996, 364, 729-745.		58
96	Differential vesicular sorting of AMPA and GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E922-31.	7.1	58
97	Real-Time Imaging Reveals Properties of Glutamate-Induced Arc/Arg 3.1 Translation in Neuronal Dendrites. Neuron, 2016, 91, 561-573.	8.1	57
98	Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E619-E628.	7.1	57
99	Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5883-90.	7.1	55
100	GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10026-10031.	7.1	53
101	GluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Journal of Biological Chemistry, 2017, 292, 8186-8194.	3.4	53
102	High-Throughput Genetic Screen for Synaptogenic Factors: Identification of LRP6 as Critical for Excitatory Synapse Development. Cell Reports, 2013, 5, 1330-1341.	6.4	52
103	ACAP3 and Arf6 Regulate Trafficking of AMPA Receptors and Synaptic Plasticity. Journal of Neuroscience, 2013, 33, 12586-12598.	3.6	51
104	Synaptoâ€depressive effects of amyloid beta require <scp>PICK</scp> 1. European Journal of Neuroscience, 2014, 39, 1225-1233.	2.6	50
105	Stress Induces Pain Transition by Potentiation of AMPA Receptor Phosphorylation. Journal of Neuroscience, 2014, 34, 13737-13746.	3.6	45
106	Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex. Journal of Neuroscience, 2017, 37, 8534-8548.	3.6	45
107	Spinal cord protein interacting with C kinase 1 is required for the maintenance of complete Freund's adjuvant-induced inflammatory pain but not for incision-induced post-operative pain. Pain, 2010, 151, 226-234.	4.2	44
108	GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors. Neuron, 2017, 93, 1405-1419.e8.	8.1	44

#	Article	IF	CITATIONS
109	The α1,α2, and α3 Subunits of GABAA Receptors: Comparison in Seizure-Prone and -Resistant Mice and during Development. Journal of Molecular Neuroscience, 1992, 3, 177-184.	2.3	43
110	Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues. Neurochemical Research, 1993, 18, 105-110.	3.3	42
111	Characterization of the tyrosine phosphorylation and distribution of dystrobrevin isoforms. FEBS Letters, 1998, 432, 133-140.	2.8	40
112	A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behavioural Brain Research, 2008, 191, 178-183.	2.2	40
113	GRIP1 regulates synaptic plasticity and learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25085-25091.	7.1	40
114	An optimized CRISPR/Cas9 approach for precise genome editing in neurons. ELife, 2021, 10, .	6.0	39
115	Dynamic imaging of AMPA receptor trafficking in vitro and in vivo. Current Opinion in Neurobiology, 2017, 45, 51-58.	4.2	38
116	Low-Dose Perampanel Rescues Cortical Gamma Dysregulation Associated With Parvalbumin Interneuron GluA2 Upregulation in Epileptic Syngap1+/â^' Mice. Biological Psychiatry, 2020, 87, 829-842.	1.3	34
117	Preserved Acute Pain and Impaired Neuropathic Pain in Mice Lacking Protein Interacting with C Kinase 1. Molecular Pain, 2011, 7, 1744-8069-7-11.	2.1	33
118	Identification of the SNARE complex mediating the exocytosis of NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12280-12285.	7.1	33
119	Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. ELife, 2021, 10, .	6.0	33
120	Kif13b Regulates PNS and CNS Myelination through the Dlg1 Scaffold. PLoS Biology, 2016, 14, e1002440.	5.6	32
121	Characterization, Expression, and Distribution of GRIP Protein. Annals of the New York Academy of Sciences, 1999, 868, 535-540.	3.8	31
122	Coupling of agonist-induced AMPA receptor internalization with receptor recycling. Journal of Neurochemistry, 2001, 77, 1626-1631.	3.9	31
123	Norepinephrine Enhances a Discrete Form of Long-Term Depression during Fear Memory Storage. Journal of Neuroscience, 2013, 33, 11825-11832.	3.6	31
124	Disruption of Glutamate Receptor-Interacting Protein in Nucleus Accumbens Enhances Vulnerability to Cocaine Relapse. Neuropsychopharmacology, 2014, 39, 759-769.	5.4	31
125	Arc Oligomerization Is Regulated by CaMKII Phosphorylation of the GAG Domain: An Essential Mechanism for Plasticity and Memory Formation. Molecular Cell, 2019, 75, 13-25.e5.	9.7	31
126	Extinction of Contextual Cocaine Memories Requires Ca _v 1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca _v 1.2-Dependent Signaling Mechanisms. Journal of Neuroscience, 2017, 37, 11894-11911.	3.6	30

#	Article	IF	CITATIONS
127	Dlg5 Regulates Dendritic Spine Formation and Synaptogenesis by Controlling Subcellular N-Cadherin Localization. Journal of Neuroscience, 2014, 34, 12745-12761.	3.6	29
128	Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity. Brain Structure and Function, 2016, 221, 591-603.	2.3	26
129	SynGAP splice variants display heterogeneous spatioâ€ŧemporal expression and subcellular distribution in the developing mammalian brain. Journal of Neurochemistry, 2020, 154, 618-634.	3.9	26
130	Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division. ELife, 2019, 8, .	6.0	26
131	DGKÎ, Catalytic Activity Is Required for Efficient Recycling of Presynaptic Vesicles at Excitatory Synapses. Cell Reports, 2016, 14, 200-207.	6.4	24
132	Tyrosine and Serine Phosphorylation of Dystrophin and the 58â€kDa Protein in the Postsynaptic Membrane of <i>Torpedo</i> Electric Organ. Journal of Neurochemistry, 1994, 62, 1947-1952.	3.9	22
133	Non-NMDA glutamate receptors are present throughout the primate hypothalamus. Journal of Comparative Neurology, 1995, 353, 539-552.	1.6	21
134	Regulation of AMPA receptor phosphorylation by the neuropeptide PACAP38. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6712-6717.	7.1	20
135	BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method. Genes and Development, 2017, 31, 537-552.	5.9	20
136	Tyrosine phosphorylation of the AMPA receptor subunit GluA2 gates homeostatic synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4948-4958.	7.1	20
137	Lamina-specific AMPA receptor dynamics following visual deprivation in vivo. ELife, 2020, 9, .	6.0	19
138	AMPA Receptors Exist in Tunable Mobile and Immobile Synaptic Fractions <i>In Vivo</i> . ENeuro, 2021, 8, ENEURO.0015-21.2021.	1.9	16
139	A light and electron microscopic study of glutamate receptors in the monkey subthalamic nucleus. Journal of Neurocytology, 2000, 29, 743-754.	1.5	14
140	Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiology of Disease, 2019, 132, 104602.	4.4	14
141	Potent PDZ-Domain PICK1 Inhibitors that Modulate Amyloid Beta-Mediated Synaptic Dysfunction. Scientific Reports, 2018, 8, 13438.	3.3	13
142	The Immediate Early Gene Arc Is Not Required for Hippocampal Long-Term Potentiation. Journal of Neuroscience, 2021, 41, 4202-4211.	3.6	13
143	Mice lacking GRIP1/2 show increased social interactions and enhanced phosphorylation at GluA2-S880. Behavioural Brain Research, 2017, 321, 176-184.	2.2	12
144	Tumor Suppression of Ras GTPase-Activating Protein RASA5 through Antagonizing Ras Signaling Perturbation in Carcinomas. IScience, 2019, 21, 1-18.	4.1	12

#	Article	IF	CITATIONS
145	Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Translational Psychiatry, 2021, 11, 65.	4.8	12
146	Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons. Neuroinformatics, 2015, 13, 443-458.	2.8	11
147	Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD?. Advances in Biological Regulation, 2018, 67, 141-147.	2.3	11
148	Characterization of phosphotyrosine containing proteins at the cholinergic synapse. FEBS Letters, 1999, 446, 95-102.	2.8	10
149	Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Cav1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology, 2020, 45, 1506-1517.	5.4	9
150	All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
151	Signature Fragment Ions of Biotinylated Peptides. Journal of the American Society for Mass Spectrometry, 2020, 31, 394-404.	2.8	8
152	Arc weakens synapses by dispersing AMPA receptors from postsynaptic density via modulating PSD phase separation. Cell Research, 2022, 32, 914-930.	12.0	8
153	Subunit-Specific Augmentation of AMPA Receptor Ubiquitination by Phorbol Ester. Cellular and Molecular Neurobiology, 2020, 40, 1213-1222.	3.3	7
154	Identification of aTorpedohomolog of Sam68 that interacts with the synapse organizing protein rapsyn. FEBS Letters, 1998, 437, 29-33.	2.8	5
155	Detection of Protein Phosphorylation in Tissues and Cells. Current Protocols in Neuroscience, 2000, 11, Unit 5.14.	2.6	3
156	Affected Sib-Pair Analyses Identify Signaling Networks Associated With Social Behavioral Deficits in Autism. Frontiers in Genetics, 2019, 10, 1186.	2.3	2
157	Identification of Synaptic DCKÎ, Interactors That Stimulate DGKÎ, Activity. Frontiers in Synaptic Neuroscience, 2022, 14, 855673.	2.5	2
158	Differential expression patterns of phospholipase D isoforms 1 and 2 in the mammalian brain and retina. Journal of Lipid Research, 2022, 63, 100247.	4.2	2
159	An Ultrasensitive PKA Biosensor for Multiâ€modal Kinase Activity Detection and Highâ€Resolution Imaging in Awake Mice. FASEB Journal, 2021, 35, .	0.5	0