Jay Ram Lamichhane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2289034/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Variability for Early Growth Traits in Second Season Sunflower. Frontiers in Agronomy, 2022, 4, .	3.3	3
2	Ecosystem services of cover crops: a research roadmap. Trends in Plant Science, 2022, 27, 758-768.	8.8	18
3	Biological seed treatments promote crop establishment and yield: a global meta-analysis. Agronomy for Sustainable Development, 2022, 42, .	5.3	13
4	Genotypic differences in root traits to design drought-avoiding soybean ideotypes. OCL - Oilseeds and Fats, Crops and Lipids, 2022, 29, 26.	1.4	2
5	Unveiling the unknown: knowledge and risk perception about the planting of pesticide-treated seed among French arable farmers. Journal of Plant Diseases and Protection, 2021, 128, 501-509.	2.9	2
6	Seedbed structure of major field crops as affected by cropping systems and climate: Results of a 15-year field trial. Soil and Tillage Research, 2021, 206, 104845.	5.6	5
7	Challenges With Managing Disease Complexes During Application of Different Measures Against Foliar Diseases of Field Pea. Plant Disease, 2021, 105, 616-627.	1.4	7
8	Editorial: Impacts of COVID-19 on global plant health and crop protection and the resulting effect on global food security and safety. Crop Protection, 2021, 139, 105383.	2.1	17
9	Early-Stage Phenotyping of Root Traits Provides Insights into the Drought Tolerance Level of Soybean Cultivars. Agronomy, 2021, 11, 188.	3.0	17
10	Post-emergence seedling damage due to vertebrate pests and its impact on soybean establishment. PeerJ, 2021, 9, e11106.	2.0	7
11	Soil and plant health in relation to dynamic sustainment of Eh and pH homeostasis: A review. Plant and Soil, 2021, 466, 391-447.	3.7	22
12	Rising risks of late-spring frosts in a changing climate. Nature Climate Change, 2021, 11, 554-555.	18.8	34
13	Cover crops promote primary crop yield in China: A meta-regression of factors affecting yield gain. Field Crops Research, 2021, 271, 108237.	5.1	29
14	Editorial - Impact assessment, ecology and management of animal pests affecting field crop establishment: An introduction to the special issue. Crop Protection, 2021, 150, 105779.	2.1	2
15	Effect of cropping systems and climate on soil physical characteristics, field crop emergence and yield: A dataset from a 19-year field experiment. Data in Brief, 2021, 39, 107581.	1.0	3
16	Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes. Plant Disease, 2020, 104, 904-920.	1.4	27
17	Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy, 2020, 113, 125972.	4.1	49
18	Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Disease, 2020, 104, 610-623.	1.4	100

#	Article	IF	CITATIONS
19	Parsimonious Use of Pesticide-Treated Seeds: An Integrated Pest Management Framework. Trends in Plant Science, 2020, 25, 1070-1073.	8.8	20
20	Editorial - Crop health in agroforestry systems: An introduction to the special issue. Crop Protection, 2020, 134, 105187.	2.1	2
21	Combining Experimental and Modeling Approaches to Understand Genotype x Sowing Date x Environment Interaction Effects on Emergence Rates and Grain Yield of Soybean. Frontiers in Plant Science, 2020, 11, 558855.	3.6	11
22	Sowing and seedbed management methods to improve establishment and yield of maize, rice and wheat across drought-prone regions: A review. Journal of Agriculture and Food Research, 2020, 2, 100089.	2.5	5
23	Crop Establishment SIMulator: A Qualitative Aggregative Model to Predict the Role of Phytobiomes on Field Crop Establishment. Phytobiomes Journal, 2020, 4, 327-339.	2.7	7
24	Will climate change affect sugar beet establishment of the 21st century? Insights from a simulation study using a crop emergence model. Field Crops Research, 2019, 238, 64-73.	5.1	11
25	The overlapping continuum of host range among strains in the Pseudomonas syringae complex. Phytopathology Research, 2019, 1, .	2.4	75
26	Research and innovation priorities as defined by the Ecophyto plan to address current crop protection transformation challenges in France. Advances in Agronomy, 2019, 154, 81-152.	5.2	22
27	A call for stakeholders to boost integrated pest management in Europe: a vision based on the three-year European research area network project. International Journal of Pest Management, 2018, 64, 352-358.	1.8	15
28	Multilocus sequence analysis reveals a novel phylogroup of <i>Xanthomonas euvesicatoria</i> pv <i>. perforans</i> causing bacterial spot of tomato in Iran. Plant Pathology, 2018, 67, 1601-1611.	2.4	19
29	Epiphytic <i>Curtobacterium flaccumfaciens</i> strains isolated from symptomless solanaceous vegetables are pathogenic on leguminous but not on solanaceous plants. Plant Pathology, 2018, 67, 388-398.	2.4	53
30	Host range and phylogenetic analysis of Xanthomonas alfalfae causing bacterial leaf spot of alfalfa in Iran. European Journal of Plant Pathology, 2018, 150, 267-274.	1.7	29
31	Pathogenicity and phylogenetic analysis of <i>Clavibacter michiganensis</i> strains associated with tomato plants in Iran. Plant Pathology, 2018, 67, 957-970.	2.4	37
32	Epiphytic growth of <i>Xanthomonas arboricola</i> and <i>Xanthomonas citri</i> on nonâ€host plants. Plant Pathology, 2018, 67, 660-670.	2.4	30
33	Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant and Soil, 2018, 432, 1-28.	3.7	101
34	Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	345
35	Advocating a need for suitable breeding approaches to boost integrated pest management: a European perspective. Pest Management Science, 2018, 74, 1219-1227.	3.4	18
36	Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Critical Reviews in Biotechnology, 2017, 37, 459-475.	9.0	59

#	Article	IF	CITATIONS
37	Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop Protection, 2017, 97, 1-6.	2.1	60
38	Phenotypic and genetic characterization of <i>Pseudomonas syringae</i> strains associated with the recent citrus bacterial blast and bacterial black pit epidemics in Tunisia. Plant Pathology, 2017, 66, 1081-1093.	2.4	8
39	Effect of two-component cultivar mixtures on development of wheat yellow rust disease in the field and greenhouse in the Nepal Himalayas. Journal of General Plant Pathology, 2017, 83, 131-139.	1.0	7
40	Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	162
41	Monitoring the occurrence of tomato bacterial spot and range of the causal agent <i>Xanthomonas perforans</i> in Iran. Plant Pathology, 2017, 66, 990-1002.	2.4	42
42	Pathogenicity, host range and phylogenetic position of Agrobacterium species associated with sugar beet crown gall outbreaks in Southern Iran. European Journal of Plant Pathology, 2017, 147, 721-730.	1.7	20
43	Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops. Pest Management Science, 2017, 73, 14-21.	3.4	47
44	Diversity of methodologies to experiment Integrated Pest Management in arable cropping systems: Analysis and reflections based on a European network. European Journal of Agronomy, 2017, 83, 86-99.	4.1	36
45	Occurrence and Characterization of the Bacterial Spot Pathogen <i><scp>X</scp>anthomonas euvesicatoria</i> on Pepper in Iran. Journal of Phytopathology, 2016, 164, 722-734.	1.0	43
46	Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Disease, 2016, 100, 10-24.	1.4	289
47	Networking of integrated pest management: A powerful approach to address common challenges in agriculture. Crop Protection, 2016, 89, 139-151.	2.1	38
48	Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective. Molecular Plant Pathology, 2016, 17, 303-310.	4.2	34
49	Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran. European Journal of Plant Pathology, 2016, 146, 129-145.	1.7	30
50	Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy. PLoS ONE, 2016, 11, e0147584.	2.5	0
51	Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: An emerging bacterial pathogen in Iran. Crop Protection, 2015, 78, 185-192.	2.1	26
52	Mutability in <i><scp>P</scp>seudomonas viridiflava</i> as a programmed balance between antibiotic resistance and pathogenicity. Molecular Plant Pathology, 2015, 16, 860-869.	4.2	15
53	Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science, 2015, 06, 385.	3.6	335
54	A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Molecular Plant Pathology, 2015, 16, 137-149.	4.2	70

#	Article	IF	CITATIONS
55	Robust cropping systems to tackle pests under climate change. A review. Agronomy for Sustainable Development, 2015, 35, 443-459.	5.3	103
56	Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. Journal of General Plant Pathology, 2015, 81, 331-350.	1.0	94
57	Bacterial Diseases of Crops. Advances in Agronomy, 2015, , 227-246.	5.2	12
58	Challenges and opportunities for integrated pest management in Europe: A telling example of minor uses. Crop Protection, 2015, 74, 42-47.	2.1	45
59	Plant pathogenic bacteria in open irrigation systems: what risk for crop health?. Plant Pathology, 2015, 64, 757-766.	2.4	15
60	Whole-Genome Sequencing of 10 Pseudomonas syringae Strains Representing Different Host Range Spectra. Genome Announcements, 2015, 3, .	0.8	13
61	Eight principles of integrated pest management. Agronomy for Sustainable Development, 2015, 35, 1199-1215.	5.3	527
62	Research and Development Priorities in the Face of Climate Change and Rapidly Evolving Pests. Sustainable Agriculture Reviews, 2015, , 1-27.	1.1	13
63	Olive Knot Pathogen with Pronounced Epiphytic Lifestyle is not Present in Association to Leaf Surface of European Olive Across the Himalayas in Nepal. Journal of Phytopathology, 2014, 162, 170-179.	1.0	0
64	<i><scp>X</scp>anthomonas arboricola</i> disease of hazelnut: current status and future perspectives for its management. Plant Pathology, 2014, 63, 243-254.	2.4	28
65	Disease and Frost Damage of Woody Plants Caused by Pseudomonas syringae. Advances in Agronomy, 2014, , 235-295.	5.2	63
66	<i>Xanthomonas arboricola</i> Diseases of Stone Fruit, Almond, and Walnut Trees: Progress Toward Understanding and Management. Plant Disease, 2014, 98, 1600-1610.	1.4	65
67	Summer Heat and Low Soil Organic Matter Influence Severity of Hazelnut Cytospora Canker. Phytopathology, 2014, 104, 387-395.	2.2	11
68	Comparison of methods used in the recovery of Phylloplane bacteria: a case study of Pseudomonas savastanoi pv. savastanoi applied to the Phylloplane of Olea europaea sub-species. Journal of Plant Protection Research, 2014, 54, 22-27.	1.0	1
69	Epiphytic Pseudomonas savastanoi pv. savastanoi can infect and cause olive knot disease on Olea europaea subsp. cuspidata. Australasian Plant Pathology, 2013, 42, 219-225.	1.0	11
70	A new medium for the detection of fluorescent pigment production by pseudomonads. Plant Pathology, 2013, 62, 624-632.	2.4	17
71	Epidemiological Study of Hazelnut Bacterial Blight in Central Italy by Using Laboratory Analysis and Geostatistics. PLoS ONE, 2013, 8, e56298.	2.5	30
72	Use of Geographic Information System and Direct Survey Methods to Detect Spatial Distribution of Wild Olive (<i>Olea cuspidata</i> Wall.) from High Mountain Forests of Northwestern Nepal. Journal of Sustainable Forestry, 2012, 31, 674-686.	1.4	6

#	Article	IF	CITATIONS
73	Emerging Hazelnut Cultivation and the Severe Threat of Bacterial Blight in <scp>C</scp> hile. Journal of Phytopathology, 2012, 160, 752-754.	1.0	7
74	Severe Outbreak of Bacterial Blight Caused by Xanthomonas arboricola pv. corylina on Hazelnut cv. Tonda di Giffoni in Central Italy. Plant Disease, 2012, 96, 1577-1577.	1.4	7
75	Severe Outbreak of Bacterial Canker Caused by <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> on Tomato in Central Italy. Plant Disease, 2011, 95, 221-221.	1.4	8
76	Bacterial speck caused by <i>Pseudomonas syringae</i> pv. <i>tomato</i> race 0: first report in Nepal. Plant Pathology, 2010, 59, 401-401.	2.4	5
77	Occurrence of Potato Soft Rot Caused by Erwinia carotovora (synonym Pectobacterium) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock 10 Tf 50
78	First report of olive knot caused by <i>Pseudomonas savastanoi</i> pv. <i>savastanoi</i> in Nepal. Plant Pathology, 2009, 58, 393-393.	2.4	16
79	Effect of Early and Conventional Sowings on Soybean Establishment Quality, Nodulation, and Early Biomass Development Under Inoculation with Rhizoctonia solani. PhytoFrontiers, 0, , PHYTOFR-12-20-0.	1.6	3