
Claire Veneault-Fourrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. New Phytologist, 2022, 233, 2534-2547.	7.3	16
2	Ectomycorrhizal Symbiosis: From Genomics to Trans-Kingdom Molecular Communication and Signaling. Rhizosphere Biology, 2022, , 273-296.	0.6	2
3	Quantitative resistance linked to late effectors. New Phytologist, 2021, 231, 1301-1303.	7.3	3
4	A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria bicolor. Microorganisms, 2021, 9, 2612.	3.6	11
5	An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant, Cell and Environment, 2020, 43, 1047-1068.	5.7	30
6	A Viable New Strategy for the Discovery of Peptide Proteolytic Cleavage Products in Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2020, 33, 1177-1188.	2.6	8
7	Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. Mycorrhiza, 2020, 30, 555-566.	2.8	9
8	The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins. Scientific Reports, 2020, 10, 20362.	3.3	21
9	The small secreted effector protein MiSSP7.6 of <i>Laccaria bicolor</i> is required for the establishment of ectomycorrhizal symbiosis. Environmental Microbiology, 2020, 22, 1435-1446.	3.8	37
10	Impacts of Soil Microbiome Variations on Root Colonization by Fungi and Bacteria and on the Metabolome of <i>Populus tremula</i> Å— <i>alba</i> . Phytobiomes Journal, 2020, 4, 142-155.	2.7	24
11	Role of Jasmonates in Beneficial Microbe–Root Interactions. Methods in Molecular Biology, 2020, 2085, 43-67.	0.9	9
12	The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 2019, 20, 605.	2.8	98
13	<i>Laccaria bicolor</i> MiSSP8 is a smallâ€secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environmental Microbiology, 2019, 21, 3765-3779.	3.8	45
14	Molecular Signalling During the Ectomycorrhizal Symbiosis. , 2019, , 95-109.		3
15	A two genes – for – one gene interaction between <i>Leptosphaeria maculans</i> and <i>Brassica napus</i> . New Phytologist, 2019, 223, 397-411.	7.3	44
16	The ectomycorrhizal basidiomycete <i>Laccaria bicolor</i> releases a secreted βâ€4,4 endoglucanase that plays a key role in symbiosis development. New Phytologist, 2018, 220, 1309-1321.	7.3	49
17	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	7.3	185
18	The Hydrophobin-Like OmSSP1 May Be an Effector in the Ericoid Mycorrhizal Symbiosis. Frontiers in Plant Science, 2018, 9, 546.	3.6	20

#	Article	IF	CITATIONS
19	Secretome Analysis from the Ectomycorrhizal Ascomycete Cenococcum geophilum. Frontiers in Microbiology, 2018, 9, 141.	3.5	24
20	Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. Plant and Cell Physiology, 2017, 58, 1003-1017.	3.1	43
21	Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology, 2016, 14, 760-773.	28.6	317
22	Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Frontiers in Microbiology, 2015, 6, 1278.	3.5	127
23	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	21.4	870
24	Effector MiSSP7 of the mutualistic fungus <i>Laccaria bicolor</i> stabilizes the <i>Populus</i> JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8299-8304.	7.1	329
25	Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genetics and Biology, 2014, 72, 168-181.	2.1	81
26	10 New Insights into Ectomycorrhizal Symbiosis Evolution and Function. , 2013, , 273-293.		1
27	Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza, 2013, 23, 597-625.	2.8	157
28	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	7.1	640
29	Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves. Physiological and Molecular Plant Pathology, 2011, 75, 106-112.	2.5	38
30	Mutualistic interactions on a knife-edge between saprotrophy and pathogenesis. Current Opinion in Plant Biology, 2011, 14, 444-450.	7.1	42
31	Autophagic Cell Death and its Importance for Fungal Developmental Biology and Pathogenesis. Autophagy, 2007, 3, 126-127.	9.1	23
32	Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus. Science, 2006, 312, 580-583.	12.6	457
33	Fungal Pls1 tetraspanins as key factors of penetration into host plants: a role in re-establishing polarized growth in the appressorium?. FEMS Microbiology Letters, 2006, 256, 179-184.	1.8	27
34	The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochemical Society Transactions, 2005, 33, 384-388.	3.4	95
35	Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. Advances in Applied Microbiology, 2005, 57, 177-215.	2.4	18
36	Nonpathogenic Strains of Colletotrichum lindemuthianum Trigger Progressive Bean Defense Responses during Appressorium-Mediated Penetration. Applied and Environmental Microbiology, 2005, 71, 4761-4770.	3.1	21

#	Article	IF	CITATIONS
37	The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genetics and Biology, 2005, 42, 306-318.	2.1	45
38	CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Molecular Microbiology, 2003, 48, 639-655.	2.5	84

4