Bassam B Dally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287589/publications.pdf Version: 2024-02-01

RASSAM R DALLY

#	Article	IF	CITATIONS
1	Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proceedings of the Combustion Institute, 2002, 29, 1147-1154.	3.9	367
2	Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combustion and Flame, 2005, 142, 117-129.	5.2	318
3	Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles. AIAA Journal, 2011, 49, 185-194.	2.6	295
4	Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combustion and Flame, 2004, 137, 418-431.	5.2	221
5	Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames. Combustion and Flame, 1998, 114, 119-148.	5.2	214
6	Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow. Combustion and Flame, 2007, 148, 48-61.	5.2	197
7	MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combustion and Flame, 2013, 160, 933-946.	5.2	193
8	Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion. Fuel, 2016, 163, 98-111.	6.4	180
9	Operational characteristics of a parallel jet MILD combustion burner system. Combustion and Flame, 2009, 156, 429-438.	5.2	179
10	Scaling of NOx emissions from a laboratory-scale mild combustion furnace. Combustion and Flame, 2008, 154, 281-295.	5.2	140
11	Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner. Combustion and Flame, 2008, 152, 100-113.	5.2	136
12	Progress and recent trend in MILD combustion. Science China Technological Sciences, 2011, 54, 255-269.	4.0	133
13	Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace. Energy & Fuels, 2009, 23, 5349-5356.	5.1	123
14	Solar thermal hybrids for combustion power plant: A growing opportunity. Progress in Energy and Combustion Science, 2018, 64, 4-28.	31.2	110
15	Evolution of the streamwise vortices generated between leading edge tubercles. Journal of Fluid Mechanics, 2016, 788, 730-766.	3.4	99
16	Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proceedings of the Combustion Institute, 2005, 30, 751-757.	3.9	97
17	Mechanisms of NO formation in MILD combustion of CH 4 /H 2 fuel blends. International Journal of Hydrogen Energy, 2014, 39, 19187-19203.	7.1	95
18	An experimental study on MILD combustion of prevaporised liquid fuels. Applied Energy, 2015, 151, 93-101.	10.1	92

#	Article	IF	CITATIONS
19	Large-Eddy Simulation of a Jet-in-Hot-Coflow Burner Operating in the Oxygen-Diluted Combustion Regime. Flow, Turbulence and Combustion, 2012, 89, 449-464.	2.6	87
20	Effect of particle size on the MILD combustion characteristics of pulverised brown coal. Fuel Processing Technology, 2017, 155, 74-87.	7.2	83
21	Burning characteristics of Victorian brown coal under MILD combustion conditions. Combustion and Flame, 2016, 172, 252-270.	5.2	82
22	Investigation of the MILD combustion regime via Principal Component Analysis. Proceedings of the Combustion Institute, 2011, 33, 3333-3341.	3.9	81
23	Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames. Combustion and Flame, 2017, 175, 270-282.	5.2	77
24	Recent advances in the measurement of strongly radiating, turbulent reacting flows. Progress in Energy and Combustion Science, 2012, 38, 41-61.	31.2	72
25	Effect of a delta-winglet vortex pair on the performance of a tube–fin heat exchanger. International Journal of Heat and Mass Transfer, 2007, 50, 5065-5072.	4.8	69
26	Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO ₂ and N ₂ . Energy & Fuels, 2015, 29, 4576-4585.	5.1	69
27	On the Burning of Sawdust in a MILD Combustion Furnace. Energy & Fuels, 2010, 24, 3462-3470.	5.1	67
28	MILD Combustion under Different Premixing Patterns and Characteristics of the Reaction Regime. Energy & Fuels, 2014, 28, 2211-2226.	5.1	61
29	Effect of fuel composition on jet flames in a heated and diluted oxidant stream. Combustion and Flame, 2012, 159, 3138-3145.	5.2	60
30	Development of temperature imaging using two-line atomic fluorescence. Applied Optics, 2009, 48, 1237.	2.1	57
31	Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combustion and Flame, 2013, 160, 1298-1309.	5.2	55
32	Reaction Zone Weakening Effects under Hot and Diluted Oxidant Stream Conditions. Combustion Science and Technology, 2009, 181, 937-953.	2.3	54
33	Moderate or Intense Low Oxygen Dilution (MILD) Combustion Characteristics of Pulverized Coal in a Self-Recuperative Furnace. Energy & amp; Fuels, 2014, 28, 6046-6057.	5.1	53
34	Simultaneous measurements of gas temperature, soot volume fraction and primary particle diameter in a sooting lifted turbulent ethylene/air non-premixed flame. Combustion and Flame, 2017, 179, 33-50.	5.2	51
35	Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proceedings of the Combustion Institute, 2015, 35, 1931-1938.	3.9	50
36	Experimental Observation of Lifted Flames in a Heated and Diluted Coflow. Energy & Fuels, 2012, 26, 5519-5527.	5.1	49

#	Article	IF	CITATIONS
37	LOx Jet Atomization Under Transverse Acoustic Oscillations. Journal of Propulsion and Power, 2014, 30, 337-349.	2.2	48
38	Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory-Scale Furnace. Energy & Fuels, 2011, 25, 2782-2793.	5.1	47
39	Global reaction mechanisms for MILD oxy-combustion of methane. Energy, 2018, 147, 839-857.	8.8	46
40	Single-shot, Time-Resolved planar Laser-Induced Incandescence (TiRe-LII) for soot primary particle sizing in flames. Proceedings of the Combustion Institute, 2015, 35, 3673-3680.	3.9	45
41	A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge. Theoretical and Computational Fluid Dynamics, 2017, 31, 1-32.	2.2	45
42	Numerical Study of Pulverized Coal MILD Combustion in a Self-Recuperative Furnace. Energy & Fuels, 2015, 29, 7650-7669.	5.1	44
43	The transition of ethanol flames from conventional to MILD combustion. Combustion and Flame, 2016, 171, 173-184.	5.2	43
44	Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 2000, 28, 123-131.	3.9	42
45	Effect of co-flow oxygen concentration on the MILD combustion of pulverised coal. Fuel Processing Technology, 2019, 193, 7-18.	7.2	42
46	Simultaneous imaging of temperature and soot volume fraction. Proceedings of the Combustion Institute, 2011, 33, 791-798.	3.9	41
47	Modified Vitiation in a Moderate or Intense Low-Oxygen Dilution (MILD) Combustion Furnace. Energy & amp; Fuels, 2012, 26, 265-277.	5.1	41
48	Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow. Combustion and Flame, 2017, 183, 330-342.	5.2	40
49	The effect of oxygen concentration in the co-flow of laminar ethylene diffusion flames. Combustion and Flame, 2020, 211, 96-111.	5.2	40
50	Coupling of Cryogenic Oxygen–Hydrogen Flames to Longitudinal and Transverse Acoustic Instabilities. Journal of Propulsion and Power, 2014, 30, 991-1004.	2.2	39
51	3D framework combining CFD and MATLAB techniques for plume source localization research. Building and Environment, 2013, 70, 10-19.	6.9	37
52	The effect of arrangement of two circular cylinders on the maximum efficiency of Vortex-Induced Vibration power using a Scale-Adaptive Simulation model. Journal of Fluids and Structures, 2014, 49, 654-666.	3.4	34
53	Research challenges in combustion and gasification arising from emerging technologies employing directly irradiated concentrating solar thermal radiation. Proceedings of the Combustion Institute, 2017, 36, 2055-2074.	3.9	34
54	Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames. Combustion and Flame, 2017, 181, 270-282.	5.2	31

#	Article	IF	CITATIONS
55	The effect of exit Reynolds number on soot volume fraction in turbulent non-premixed jet flames. Combustion and Flame, 2018, 187, 42-51.	5.2	30
56	Hydrodynamic and chemical effects of hydrogen addition on soot evolution in turbulent nonpremixed bluff body ethylene flames. Proceedings of the Combustion Institute, 2017, 36, 807-814.	3.9	29
57	Turbulent Shear Stress Effects on Plant Cell Suspension Cultures. Chemical Engineering Research and Design, 2001, 79, 867-875.	5.6	28
58	The role of precursors on the stabilisation of jet flames issuing into a hot environment. Combustion and Flame, 2014, 161, 465-474.	5.2	28
59	Measurements of no in turbulent non-premixed flames stabilized on a bluff body. Proceedings of the Combustion Institute, 1996, 26, 2191-2197.	0.3	27
60	Two-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames. Combustion and Flame, 2003, 132, 272-274.	5.2	25
61	Structural differences of ethanol and DME jet flames in a hot diluted coflow. Combustion and Flame, 2018, 192, 473-494.	5.2	25
62	The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combustion and Flame, 2011, 158, 1814-1821.	5.2	24
63	Temperature measurements in turbulent non-premixed flames by two-line atomic fluorescence. Proceedings of the Combustion Institute, 2013, 34, 3619-3627.	3.9	23
64	Improvement of precision and accuracy of temperature imaging in sooting flames using two-line atomic fluorescence (TLAF). Combustion and Flame, 2016, 167, 481-493.	5.2	23
65	Experimental demonstration of the hybrid solar receiver combustor. Applied Energy, 2018, 224, 426-437.	10.1	23
66	Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames. Combustion and Flame, 2018, 194, 376-386.	5.2	23
67	Assessment of the potential benefits and constraints of a hybrid solar receiver and combustor operated in the MILD combustion regime. Energy, 2016, 116, 735-745.	8.8	21
68	Analytical assessment of a novel hybrid solar tubular receiver and combustor. Applied Energy, 2016, 162, 298-307.	10.1	21
69	Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part II: Effect of the combustion mode. Solar Energy, 2017, 147, 479-488.	6.1	21
70	Instantaneous Temperature Imaging of Diffusion Flames Using Two-Line Atomic Fluorescence. Applied Spectroscopy, 2010, 64, 173-176.	2.2	20
71	Global characteristics of non-premixed jet flames of hydrogen–hydrocarbon blended fuels. Combustion and Flame, 2015, 162, 1326-1335.	5.2	20
72	Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part I: Solar-only and combustion-only employing conventional combustion. Solar Energy, 2017, 147, 489-503.	6.1	20

#	Article	IF	CITATIONS
73	Experimental investigation of the effects of wind speed and yaw angle on heat losses from a heated cavity. Solar Energy, 2018, 165, 178-188.	6.1	20
74	Temperature and reaction zone imaging in turbulent swirling dual-fuel flames. Proceedings of the Combustion Institute, 2019, 37, 2159-2166.	3.9	20
75	The instantaneous spatial structure of the recirculation zone in bluff-body stabilized flames. Proceedings of the Combustion Institute, 1998, 27, 1031-1038.	0.3	19
76	Experimental investigation of soot evolution in a turbulent non-premixed prevaporized toluene flame. Proceedings of the Combustion Institute, 2019, 37, 849-857.	3.9	19
77	Thermal performance analysis of a syngas-fuelled hybrid solar receiver combustor operated in the MILD combustion regime. Combustion Science and Technology, 2019, 191, 2-17.	2.3	19
78	Solvent effects on two-line atomic fluorescence of indium. Applied Optics, 2010, 49, 1257.	2.1	18
79	Flame response to acoustic excitation in a rectangular rocket combustor with LOx/H2 propellants. CEAS Space Journal, 2011, 2, 41-49.	2.3	18
80	Flow seeding with elemental metal species via an optical method. Applied Physics B: Lasers and Optics, 2012, 107, 665-668.	2.2	18
81	Temperature imaging of turbulent dilute spray flames using two-line atomic fluorescence. Experiments in Fluids, 2014, 55, 1.	2.4	18
82	Investigation of NOx conversion characteristics in a porous medium. Combustion and Flame, 2008, 152, 604-615.	5.2	17
83	Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Applied Physics B: Lasers and Optics, 2011, 104, 189-198.	2.2	17
84	Downstream evolution of n-heptane/toluene flames in hot and vitiated coflows. Combustion and Flame, 2019, 202, 78-89.	5.2	17
85	An experimental study of the stability and performance characteristics of a Hybrid Solar Receiver Combustor operated in the MILD combustion regime. Proceedings of the Combustion Institute, 2019, 37, 5687-5695.	3.9	16
86	New Seeding Methodology for Gas Concentration Measurements. Applied Spectroscopy, 2012, 66, 803-809.	2.2	15
87	Effect of a rigid wall on the vortex induced vibration of two staggered circular cylinders. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	15
88	Comparative Study of the MILD Combustion Characteristics of Biomass and Brown Coal. Energy & Fuels, 2018, 32, 4202-4211.	5.1	15
89	Soot evolution and flame response to acoustic forcing of laminar non-premixed jet flames at varying amplitudes. Combustion and Flame, 2018, 198, 249-259.	5.2	15
90	LES/TPDF investigation of the role of reaction and diffusion timescales in the stabilization of a jet-in-hot-coflow CH4/H2 flame. Combustion and Flame, 2020, 211, 477-492.	5.2	14

#	Article	IF	CITATIONS
91	Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen. Acta Astronautica, 2018, 147, 251-258.	3.2	13
92	Combined solar energy and combustion of hydrogen-based fuels under MILD conditions. International Journal of Hydrogen Energy, 2018, 43, 20086-20100.	7.1	13
93	Simultaneously calibrated two-line atomic fluorescence for high-precision temperature imaging in sooting flames. Proceedings of the Combustion Institute, 2019, 37, 1417-1425.	3.9	12
94	Experimental and numerical study of the influence of syngas composition on the performance and stability of a laboratory-scale MILD combustor. Experimental Thermal and Fluid Science, 2020, 115, 110083.	2.7	12
95	The influence of high flux broadband irradiation on soot concentration and temperature of a sooty flame. Combustion and Flame, 2016, 171, 103-111.	5.2	11
96	Iso-thermal flow characteristics of rotationally symmetric jets generating a swirl within a cylindrical chamber. Physics of Fluids, 2018, 30, 055110.	4.0	11
97	Flow dynamics of multi-lateral jets injection into a round pipe flow. Experiments in Fluids, 2015, 56, 1.	2.4	10
98	Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets. Physics of Fluids, 2017, 29, 105111.	4.0	10
99	Experimental and numerical study of transcritical oxygen-hydrogen rocket flame response to transverse acoustic excitation. Proceedings of the Combustion Institute, 2021, 38, 5979-5986.	3.9	7
100	Power efficiency estimation of an inductive plasma generator using propellant mixtures of oxygen, carbon-dioxide and argon. Acta Astronautica, 2021, 179, 536-545.	3.2	7
101	Study of LOx/H2 Spray Flame Response to Acoustic Excitation in a Rectangular Rocket Combustor. , 2013, , .		6
102	The influence of aspect ratio on the iso-thermal flow characteristics of multiple confined jets. Physics of Fluids, 2018, 30, 125108.	4.0	6
103	A new correlation between soot sheet width and soot volume fraction in turbulent non-premixed jet flames. Proceedings of the Combustion Institute, 2019, 37, 927-934.	3.9	6
104	Soot-flowfield interactions in turbulent non-premixed bluff-body flames of ethylene/nitrogen. Proceedings of the Combustion Institute, 2021, 38, 1125-1132.	3.9	6
105	Characteristics of swirling and precessing flows generated by multiple confined jets. Physics of Fluids, 2019, 31, 055102.	4.0	5
106	Resolving transient discharge cycle behaviour in modulated inductive plasmas. Vacuum, 2020, 182, 109636.	3.5	5
107	Generating planar distributions of soot particles from luminosity images in turbulent flames using deep learning. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	5
108	Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths. Applied Optics, 2012, 51, 55.	1.8	4

#	Article	IF	CITATIONS
109	Acoustic characterisation of a rectangular rocket combustor with liquid oxygen and hydrogen propellants. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227, 436-446.	1.3	4
110	Calculated concentration distributions and time histories of key species in an acoustically forced laminar flame. Combustion and Flame, 2019, 204, 189-203.	5.2	4
111	Experimental investigation of the influence of solar-to-fuel ratio on performance and stability characteristics of hybrid solar-MILD hydrogen processes. Proceedings of the Combustion Institute, 2021, 38, 6723-6731.	3.9	3
112	Statistical relationship between soot volume fraction, temperature, primary particle diameter and OH radicals along transects normal to the local reaction zone in a turbulent flame. Proceedings of the Combustion Institute, 2021, 38, 1497-1505.	3.9	3
113	Experimental investigation on the influence of an air curtain on the convective heat losses from solar cavity receivers under windy condition. AIP Conference Proceedings, 2020, , .	0.4	3
114	Propagation of 632.8 nm and 4.67 Ã,µm laser beams in a turbulent flow containing CO 2 and H 2 O at high temperatures. Proceedings of SPIE, 2008, , .	0.8	2
115	Coupling Behaviour of LOx/H2 Flames to Longitudinal and Transverse Acoustic Instabilities. , 2012, , .		2
116	The effect of surface reactions on the prediction of NOX conversion efficiency in a porous burner. Combustion and Flame, 2013, 160, 2169-2181.	5.2	2
117	On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures. , 2008, , .		1
118	Optical thermometry for high temperature multiphase environments under high-flux irradiation. Solar Energy, 2017, 146, 191-198.	6.1	1
119	Performance of a hybrid solar receiver combustor. AIP Conference Proceedings, 2018, , .	0.4	1
120	Performance characteristics of a hybrid solar receiver combustor utilising hydrogen or syngas. AIP Conference Proceedings, 2019, , .	0.4	1
121	Hybrid Solar-MILD Combustion for Renewable Energy Generation. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	1
122	Energy Concentration by Bluff Bodies—A Particle Image Velocimetry Investigation. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	1.5	1
123	CFD Analysis of the Tigerfish Retractable Float System on a DHC- Twin Otter. SAE International Journal of Aerospace, 0, 1, 619-629.	4.0	0
124	Experimental and numerical study of oxygen-hydrogen rocket flame response to transverse acoustic excitation. , 2018, , .		0
125	Optics and Photonics in Solar Thermal Energy Technologies. , 2014, , .		0
126	First-of-a-kind demonstration of a direct hybrid between a solar receiver and the radiant burner technology. AIP Conference Proceedings, 2020, , .	0.4	0

#	Article	IF	CITATIONS
127	Model for Estimating Time-Varying Properties of an Inductively Coupled Plasma. IEEE Transactions on Plasma Science, 2022, 50, 1227-1236.	1.3	0