Lei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228746/publications.pdf

Version: 2024-02-01

236925 276875 2,967 42 25 41 citations h-index g-index papers 45 45 45 3995 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Maternal control of early mouse development. Development (Cambridge), 2010, 137, 859-870.	2.5	374
2	Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nature Cell Biology, 2018, 20, 535-540.	10.3	302
3	A Subcortical Maternal Complex Essential for Preimplantation Mouse Embryogenesis. Developmental Cell, 2008, 15, 416-425.	7.0	242
4	The maternal to zygotic transition in mammals. Molecular Aspects of Medicine, 2013, 34, 919-938.	6.4	188
5	WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO Journal, 2013, 32, 2685-2696.	7.8	167
6	Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nature Genetics, 2018, 50, 96-105.	21.4	164
7	In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science, 2019, 366, .	12.6	149
8	Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development (Cambridge), 2008, 135, 259-269.	2.5	102
9	The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nature Communications, 2014, 5, 4887.	12.8	102
10	Notch Signaling Is Involved in Ovarian Follicle Development by Regulating Granulosa Cell Proliferation. Endocrinology, 2011, 152, 2437-2447.	2.8	85
11	BTG4 is a key regulator for maternal mRNA clearance during mouse early embryogenesis. Journal of Molecular Cell Biology, 2016, 8, 366-368.	3.3	85
12	Testosterone Induces Redistribution of Forkhead Box-3a and Down-Regulation of Growth and Differentiation Factor 9 Messenger Ribonucleic Acid Expression at Early Stage of Mouse Folliculogenesis. Endocrinology, 2010, 151, 774-782.	2.8	83
13	Identification of a human subcortical maternal complex. Molecular Human Reproduction, 2015, 21, 320-329.	2.8	75
14	A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends in Molecular Medicine, 2017, 23, 1014-1023.	6.7	74
15	Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nature Genetics, 2020, 52, 95-105.	21.4	69
16	Uterine Rbpj is required for embryonic-uterine orientation and decidual remodeling via Notch pathway-independent and -dependent mechanisms. Cell Research, 2014, 24, 925-942.	12.0	68
17	<i>Mettl14</i> is required for mouse postimplantation development by facilitating epiblast maturation. FASEB Journal, 2019, 33, 1179-1187.	0.5	60
18	Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nature Cell Biology, 2022, 24, 968-980.	10.3	57

#	Article	IF	Citations
19	BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nature Communications, 2017, 8, 14182.	12.8	53
20	Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Research, 2021, 31, 526-541.	12.0	53
21	Integral Proteomic Analysis of Blastocysts Reveals Key Molecular Machinery Governing Embryonic Diapause and Reactivation for Implantation in Mice1. Biology of Reproduction, 2014, 90, 52.	2.7	48
22	Wnt $\hat{\Pi}^2$ -catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Molecular and Cellular Endocrinology, 2014, 382, 915-925.	3.2	48
23	Filia Is an ESC-Specific Regulator of DNA Damage Response and Safeguards Genomic Stability. Cell Stem Cell, 2015, 16, 684-698.	11.1	46
24	Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development (Cambridge), 2015, 142, 3943-53.	2.5	35
25	Inhibin A inhibits follicle-stimulating hormone (FSH) action by suppressing its receptor expression in cultured rat granulosa cells. Molecular and Cellular Endocrinology, 2009, 298, 48-56.	3.2	34
26	Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. Journal of Molecular Cell Biology, 2018, 10, 74-88.	3.3	29
27	Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics, 2020, 10, 9686-9701.	10.0	24
28	MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2. Journal of Biological Chemistry, 2016, 291, 12126-12135.	3.4	23
29	The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development (Cambridge), 2019, 146, .	2.5	22
30	The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biology, 2015, 5, 150092.	3.6	21
31	ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Research and Therapy, 2018, 9, 2.	5. 5	15
32	The N-terminus of FILIA Forms an Atypical KH Domain with a Unique Extension Involved in Interaction with RNA. PLoS ONE, 2012, 7, e30209.	2.5	14
33	Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout. Developmental Biology, 2019, 455, 420-433.	2.0	12
34	Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. Journal of Biological Chemistry, 2017, 292, 1438-1448.	3.4	10
35	Putting Stem Cells on a Low-Fat Diet Switches Their Pluripotent State. Cell Stem Cell, 2019, 25, 3-5.	11.1	7
36	Whole-transcriptome splicing profiling of E7.5 mouse primary germ layers reveals frequent alternative promoter usage during mouse early embryogenesis. Biology Open, 2018, 7, .	1.2	6

#	Article	IF	CITATION
37	BCAS2 is involved in alternative splicing and mouse oocyte development. FASEB Journal, 2022, 36, e22128.	0.5	5
38	DDX1 vesicles control calcium-dependent mitochondrial activity in mouse embryos. Nature Communications, 2022, 13 , .	12.8	5
39	Stabilizing Formative Pluripotent States with Germ Cell Competency. Cell Stem Cell, 2021, 28, 361-363.	11.1	4
40	Comments on †In vitro culture of cynomolgus monkey embryos beyond early gastrulation'. Journal of Molecular Cell Biology, 2020, 12, 400-402.	3.3	3
41	Cnot8 eliminates $na\tilde{A}$ -ve regulation networks and is essential for $na\tilde{A}$ -ve-to-formative pluripotency transition. Nucleic Acids Research, 2022, , .	14.5	1
42	In vitro investigation of mammalian peri-implantation embryogenesis. Biology of Reproduction, 2022, , .	2.7	0