Pavel V Popryadukhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228742/publications.pdf

Version: 2024-02-01

1163117 1199594 14 326 8 12 citations g-index h-index papers 14 14 14 410 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Science Advances, 2022, 8, eabm2469.	10.3	53
2	Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery. Nature Communications, 2021, 12, 3961.	12.8	32
3	Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2020, 8, 53-62.	0.3	4
4	Alternative approaches to overcome diastasis of damaged peripheral nerves. A review article. Cellular Therapy and Transplantation, 2019, 8, 20-25.	0.3	0
5	Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydrate Polymers, 2018, 194, 260-266.	10.2	37
6	Surgical treatment of inflammatory periodontal diseases using chitosan matrices. Cellular Therapy and Transplantation, 2018, 7, 66-71.	0.3	0
7	Preparation of Conducting Composite Materials Based on Polymer Nanofibers and Polypyrrole. Russian Journal of Applied Chemistry, 2017, 90, 1680-1685.	0.5	6
8	Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers. International Journal of Biomaterials, 2017, 2017, 1-10.	2.4	21
9	Tissue reconstruction of skin failures and soft-tissue injuries using regenerative medicine methods. St Petersburg Polytechnical University Journal Physics and Mathematics, 2016, 2, 322-328.	0.3	4
10	In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polymer Testing, 2016, 52, 41-45.	4.8	21
11	Vascular Prostheses Based on Nanofibers from Aliphatic Copolyamide. Cardiovascular Engineering and Technology, 2016, 7, 78-86.	1.6	6
12	Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydrate Polymers, 2014, 108, 176-182.	10.2	114
13	Influence of spinning conditions on properties of chitosan fibers. Fibre Chemistry, 2013, 44, 280-283.	0.2	12
14	Composite materials based on chitosan and montmorillonite: Prospects for use as a matrix for cultivation of stem and regenerative cells. Cell and Tissue Biology, 2012, 6, 82-88.	0.4	16