Yi Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simple SERS substrates: powerful, portable, and full of potential. Physical Chemistry Chemical Physics, 2014, 16, 2224-2239.	2.8	197
2	In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter, 2010, 6, 3177.	2.7	150
3	Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Applied Physics Letters, 2006, 88, 263102.	3.3	140
4	Mechanism and Optimization of pH Sensing Using SnO ₂ Nanobelt Field Effect Transistors. Nano Letters, 2008, 8, 4179-4184.	9.1	119
5	Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, 2011, 7, 5677.	2.7	103
6	Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers, 2015, 7, 1-46.	4.5	87
7	Coupling Electrodeposition with Layerâ€byâ€Layer Assembly to Address Proteins within Microfluidic Channels. Advanced Materials, 2011, 23, 5817-5821.	21.0	83
8	Electrodeposition of a Biopolymeric Hydrogel: Potential for One-Step Protein Electroaddressing. Biomacromolecules, 2012, 13, 1181-1189.	5.4	82
9	Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Applied Physics Letters, 2006, 89, 093114.	3.3	79
10	Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. Journal of Materials Chemistry, 2012, 22, 7659.	6.7	75
11	Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. Biosensors and Bioelectronics, 2011, 26, 4538-4544.	10.1	74
12	Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab on A Chip, 2011, 11, 2316.	6.0	68
13	Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula. Analyst, The, 2012, 137, 826.	3.5	68
14	Autonomous bacterial localization and gene expression based on nearby cell receptor density. Molecular Systems Biology, 2013, 9, 636.	7.2	65
15	Electroaddressing Functionalized Polysaccharides as Model Biofilms for Interrogating Cell Signaling. Advanced Functional Materials, 2012, 22, 519-528.	14.9	61
16	Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties. Soft Matter, 2013, 9, 2703.	2.7	59
17	Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sensors and Actuators B: Chemical, 2007, 128, 226-234.	7.8	57
18	Biofabricating Multifunctional Soft Matter with Enzymes and Stimuliâ€Responsive Materials. Advanced Functional Materials, 2012, 22, 3004-3012.	14.9	54

YI CHENG

1

#	Article	IF	CITATIONS
19	Electronic modulation of biochemical signal generation. Nature Nanotechnology, 2014, 9, 605-610.	31.5	52
20	Biofabrication of stratified biofilm mimics for observation and control of bacterial signaling. Biomaterials, 2012, 33, 5136-5143.	11.4	46
21	Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases. Materials Chemistry and Physics, 2012, 137, 372-380.	4.0	42
22	Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Materials Letters, 2012, 87, 97-100.	2.6	41
23	Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab on A Chip, 2013, 13, 1854.	6.0	39
24	Accessing biology's toolbox for the mesoscale biofabrication of soft matter. Soft Matter, 2013, 9, 6019.	2.7	30
25	Electroaddressing Agarose Using Fmoc-Phenylalanine as a Temporary Scaffold. Langmuir, 2011, 27, 7380-7384.	3.5	28
26	Integrated biofabrication for electroâ€addressed inâ€film bioprocessing. Biotechnology Journal, 2012, 7, 428-439.	3.5	13
27	Bridging the Bio-Electronic Interface with Biofabrication. Journal of Visualized Experiments, 2012, , e4231.	0.3	1

Biofabricating the Bio-Device Interface Using Biological Materials and Mechanisms. , 2013, , 239-257.