Gajendra Kumar Azad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228723/publications.pdf

Version: 2024-02-01

49 papers

1,497 citations

331670 21 h-index 35 g-index

57 all docs

57 docs citations

57 times ranked

2436 citing authors

#	Article	IF	CITATIONS
1	Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. Environmental Research, 2022, 204, 112092.	7.5	4
2	Emerging genetic diversity of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) alters its B-cell epitopes. Biologicals, 2022, 75, 29-36.	1.4	9
3	Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. International Journal of Biological Macromolecules, 2022, 194, 128-143.	7. 5	13
4	The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of Biochemistry and Biophysics, 2022, 717, 109124.	3.0	20
5	An issue of concern: unique truncated ORF8 protein variants of SARS-CoV-2. PeerJ, 2022, 10, e13136.	2.0	7
6	The structural basis of accelerated host cell entry by SARSâ€CoVâ€2â€. FEBS Journal, 2021, 288, 5010-5020.	4.7	129
7	Questions concerning the proximal origin of SARSâ€CoVâ€2. Journal of Medical Virology, 2021, 93, 1204-1206.	5.0	56
8	Identification and molecular characterization of mutations in nucleocapsid phosphoprotein of SARS-CoV-2. PeerJ, 2021, 9, e10666.	2.0	22
9	The molecular assessment of SARS-CoV-2 Nucleocapsid Phosphoprotein variants among Indian isolates. Heliyon, 2021, 7, e06167.	3.2	24
10	Urgent Need for Field Surveys of Coronaviruses in Southeast Asia to Understand the SARS-CoV-2 Phylogeny and Risk Assessment for Future Outbreaks. Biomolecules, 2021, 11, 398.	4.0	3
11	A unique view of SARS-CoV-2 through the lens of ORF8 protein. Computers in Biology and Medicine, 2021, 133, 104380.	7.0	48
12	Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 181, 801-809.	7.5	36
13	Molecular assessment of proteins encoded by the mitochondrial genome of Clarias batrachus and Clarias gariepinus. Biochemistry and Biophysics Reports, 2021, 26, 100985.	1.3	2
14	COVID-19 Vaccines and Thrombosisâ€"Roadblock or Dead-End Street?. Biomolecules, 2021, 11, 1020.	4.0	28
15	Variations in Orf3a protein of SARS-CoV-2 alter its structure and function. Biochemistry and Biophysics Reports, 2021, 26, 100933.	1.3	32
16	Autoimmunity roots of the thrombotic events after COVID-19 vaccination. Autoimmunity Reviews, 2021, 20, 102941.	5.8	39
17	The mechanism behind flaring/triggering of autoimmunity disorders associated with COVID-19. Autoimmunity Reviews, 2021, 20, 102909.	5.8	7
18	Implications derived from S-protein variants of SARS-CoV-2 from six continents. International Journal of Biological Macromolecules, 2021, 191, 934-955.	7. 5	10

#	Article	IF	CITATIONS
19	Identification of novel mutations in the methyltransferase complex (Nsp10-Nsp16) of SARS-CoV-2. Biochemistry and Biophysics Reports, 2020, 24, 100833.	1.3	13
20	Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics. Gene Reports, 2020, 21, 100891.	0.8	20
21	Vimentin protects differentiating stem cells from stress. Scientific Reports, 2020, 10, 19525.	3.3	32
22	A Comprehensive, Multi-Modal Strategy to Mitigate Alzheimer's Disease Risk Factors Improves Aspects of Metabolism and Offsets Cognitive Decline in Individuals with Cognitive Impairment. Journal of Alzheimer's Disease Reports, 2020, 4, 1-8.	2.2	4
23	The Importance of Research on the Origin of SARS-CoV-2. Viruses, 2020, 12, 1203.	3.3	27
24	Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features. Molecules, 2020, 25, 5906.	3.8	33
25	Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ, 2020, 8, e9492.	2.0	54
26	PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation. Journal of Cell Biology, 2018, 217, 473-481.	5.2	32
27	Modifying Chromatin by Histone Tail Clipping. Journal of Molecular Biology, 2018, 430, 3051-3067.	4.2	33
28	Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation. Stem Cell Reports, 2017, 9, 1291-1303.	4.8	19
29	An Endogenously Tagged Fluorescent Fusion Protein Library in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1304-1314.	4.8	19
30	In vitro Histone H3 Cleavage Assay for Yeast and Chicken Liver H3 Protease. Bio-protocol, 2017, 7, e2085.	0.4	0
31	The multifunctional transcription factor Rap1 a regulator of yeast physiology. Frontiers in Bioscience - Landmark, 2016, 21, 918-930.	3.0	24
32	Partial purification of histone H3 proteolytic activity from the budding yeast <i>Saccharomyces cerevisiae</i> . Yeast, 2016, 33, 217-226.	1.7	5
33	Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the <scp>TOR</scp> pathway in <i>Saccharomyces cerevisiae</i> >. FEBS Journal, 2016, 283, 4056-4083.	4.7	28
34	Flocculation in <i>Saccharomyces cerevisiae</i> is regulated by RNA/DNA helicase Sen1p. FEBS Letters, 2015, 589, 3165-3174.	2.8	11
35	The transcription factor Rap1p is required for tolerance to cellâ€wall perturbing agents and for cellâ€wall maintenance in <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2015, 589, 59-67.	2.8	7
36	Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae. BMC Microbiology, 2014, 14, 317.	3.3	15

#	Article	IF	Citations
37	An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Organic and Biomolecular Chemistry, 2014, 12, 1215-1219.	2.8	58
38	Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae. European Journal of Pharmacology, 2014, 736, 77-85.	3.5	19
39	Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Molecular Biology Reports, 2014, 41, 2717-2730.	2.3	38
40	Signaling of Chloroquine-Induced Stress in the Yeast Saccharomyces cerevisiae Requires the Hog1 and Slt2 Mitogen-Activated Protein Kinase Pathways. Antimicrobial Agents and Chemotherapy, 2014, 58, 5552-5566.	3.2	14
41	Antiâ€cancer drug KP1019 modulates epigenetics and induces DNA damage response in <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2014, 588, 1044-1052.	2.8	27
42	Ebselen induces reactive oxygen species (ROS)â€mediated cytotoxicity in <i>Saccharomyces cerevisiae</i> with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio, 2014, 4, 77-89.	2.3	78
43	Epigenetics: Role of Histone Proteases in Cellular Functions and Diseases. , 2014, , 113-126.		2
44	Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Molecular Biology Reports, 2014, 41, 4865-4879.	2.3	266
45	Assessment of the Biological Pathways Targeted by Isocyanate Using N-Succinimidyl N-Methylcarbamate in Budding Yeast Saccharomyces cerevisiae. PLoS ONE, 2014, 9, e92993.	2.5	16
46	Depletion of Cellular Iron by Curcumin Leads to Alteration in Histone Acetylation and Degradation of Sml1p in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e59003.	2.5	25
47	Sen1p Contributes to Genomic Integrity by Regulating Expression of Ribonucleotide Reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e64798.	2.5	21
48	Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochemical and Biophysical Research Communications, 2012, 421, 261-267.	2.1	32
49	Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins. Biochemical Pharmacology, 2012, 83, 296-303.	4.4	18