
Silvia Diaz-Prado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global DNA Methylation in Dental Implant Failure Due to Peri-Implantitis: An Exploratory Clinical Pilot Study. International Journal of Environmental Research and Public Health, 2022, 19, 1020.	2.6	3
2	Generation of an immortalized chondrocyte cell line from osteoarthritis articular cartilage. Osteoarthritis and Cartilage, 2021, 29, S208-S209.	1.3	1
3	Current development of alternative treatments for endothelial decompensation: Cell-based therapy. Experimental Eye Research, 2021, 207, 108560.	2.6	6
4	Generation of Mesenchymal Cell Lines Derived from Aged Donors. International Journal of Molecular Sciences, 2021, 22, 10667.	4.1	7
5	Tips and tricks for successfully culturing and adapting human induced pluripotent stem cells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 569-581.	4.1	10
6	Analysis of Cryopreservation Protocols and Their Harmful Effects on the Endothelial Integrity of Human Corneas. International Journal of Molecular Sciences, 2021, 22, 12564.	4.1	8
7	Generation of a human control iPS cell line (ESi080â€A) from a donor with no rheumatic diseases. Stem Cell Research, 2020, 43, 101683.	0.7	3
8	Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features. Stem Cells International, 2020, 2020, 1-24.	2.5	10
9	Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. International Journal of Molecular Sciences, 2020, 21, 6124.	4.1	9
10	Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches—An Overview. Pharmaceutics, 2020, 12, 752.	4.5	32
11	Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Scientific Reports, 2020, 10, 4272.	3.3	30
12	Comparison of three different chondrogenic differentiation protocols to obtain chondrocyte-like cells from induced pluripotent stem cells. Osteoarthritis and Cartilage, 2020, 28, S34.	1.3	1
13	Immortalization of "osteoarthritis" and "healthy" mesenchymal stromal cells without loss of mesenchymal features. Osteoarthritis and Cartilage, 2019, 27, S424-S425.	1.3	0
14	OP0073â€ESTABLISHMENT OF HUMAN INDUCED PLURIPOTENT STEM CELL-LINES (IPSC) FOR IN VITRO MODELLING HAND OSTHEOARTHRITIS. , 2019, , .		0
15	AB0102â€GENERATION OF OSTEOARTHRITIC MESENCHYMAL STROMAL CELL LINES. , 2019, , .		0
16	Usefulness of Mesenchymal Cell Lines for Bone and Cartilage Regeneration Research. International Journal of Molecular Sciences, 2019, 20, 6286.	4.1	17
17	An artificial-vision- and statistical-learning-based method for studying the biodegradation of type I collagen scaffolds in bone regeneration systems. PeerJ, 2019, 7, e7233.	2.0	10
18	An educational environment based on digital image processing to support the learning process of		0

biomaterials degradation in stem cells. , 2018, , .

SILVIA DIAZ-PRADO

#	Article	IF	CITATIONS
19	Statistical degradation modelling of Poly(D,L-lactide-co-glycolide) copolymers for bioscaffold applications. PLoS ONE, 2018, 13, e0204004.	2.5	8
20	Establishment of an induced pluripotent stem cell-line from hand osteoarthritic patients. Osteoarthritis and Cartilage, 2018, 26, S297-S298.	1.3	0
21	Induced pluripotent stem cells for cartilage repair: current status and future perspectives. , 2018, 36, 96-109.		66
22	AB0103â€Establishment of a human induced pluripotent stem cell-line from patients with hand ostheoarthritis. , 2018, , .		0
23	Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair. Tissue Engineering - Part A, 2017, 23, 901-912.	3.1	22
24	Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage inÂvitro. Nitric Oxide - Biology and Chemistry, 2017, 70, 42-50.	2.7	23
25	Ovine mesenchymal stromal cells for osteochondral tissue engineering. Osteoarthritis and Cartilage, 2017, 25, S387.	1.3	0
26	Ovine Mesenchymal Stromal Cells: Morphologic, Phenotypic and Functional Characterization for Osteochondral Tissue Engineering. PLoS ONE, 2017, 12, e0171231.	2.5	23
27	Human Cartilage Engineering in an <i>In Vitro</i> Repair Model Using Collagen Scaffolds and Mesenchymal Stromal Cells. International Journal of Medical Sciences, 2017, 14, 1257-1262.	2.5	11
28	Tissue engineering in an in vitro model of human cartilage repair. Osteoarthritis and Cartilage, 2016, 24, S169-S170.	1.3	1
29	Differentiation of human mesenchymal stromal cells cultured on collagen sponges for cartilage repair. Histology and Histopathology, 2016, 31, 1221-39.	0.7	10
30	Human cartilage repair using human mesenchymal stem cells and collagen scaffolds. Osteoarthritis and Cartilage, 2015, 23, A148.	1.3	0
31	Alternative protocols to induce chondrogenic differentiation: transforming growth factor-Î ² superfamily. Cell and Tissue Banking, 2015, 16, 195-207.	1.1	25
32	Mesenchymal Stem Cells from Human Amniotic Membrane. , 2014, , 191-198.		2
33	Cartilage tissue engineering: adult human mesenchymal stromal cells and collagen biomaterials. Osteoarthritis and Cartilage, 2014, 22, S154.	1.3	1
34	In vitro cartilage tissue engineering using human bone marrow mesenchymal stem cells grown on different collagen scaffolds. Osteoarthritis and Cartilage, 2013, 21, S310.	1.3	2
35	Tissue engineering for cartilage repair: growth and proliferation of hBM-MSCs on scaffolds composed of Collagen I and Heparan Sulphate. Osteoarthritis and Cartilage, 2013, 21, S310-S311.	1.3	2
36	Effects of Severe Hypoxia on Bone Marrow Mesenchymal Stem Cells Differentiation Potential. Stem Cells International, 2013, 2013, 1-11.	2.5	70

SILVIA DIAZ-PRADO

#	Article	IF	CITATIONS
37	Human Amniotic Membrane: A Potential Tissue and Cell Source for Cell Therapy and Regenerative Medicine. , 2013, , 55-78.		1
38	Evaluation of the Adenocarcinoma-Associated Gene AGR2 and the Intestinal Stem Cell Marker LGR5 as Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2012, 13, 4367-4387.	4.1	40
39	Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskeletal Disorders, 2012, 13, 144.	1.9	156
40	Type I Collagen and heparan sulfate scaffolds support human chondrogenesis for cartilage tissue engineering. Osteoarthritis and Cartilage, 2012, 20, S271-S272.	1.3	0
41	An In vitro porcine study of repearing articular cartilage with human amniotic membrane epithelial and mesenchymal stem cells. Osteoarthritis and Cartilage, 2012, 20, S273.	1.3	Ο
42	In vitro cartilage tissue engineering with different types of collagen porous scaffolds and human bone marrow mesenchymal stem cells. Osteoarthritis and Cartilage, 2012, 20, S279.	1.3	0
43	In Vitro Repair Model of Focal Articular Cartilage Defects in Humans. Methods in Molecular Biology, 2012, 885, 251-261.	0.9	2
44	Circulating microRNAs as potential biomarkers in patients with renal tumors Journal of Clinical Oncology, 2012, 30, 405-405.	1.6	2
45	Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage. The Open Orthopaedics Journal, 2012, 6, 150-159.	0.2	21
46	Quantification of Cells Expressing Mesenchymal Stem Cell Markers in Healthy and Osteoarthritic Synovial Membranes. Journal of Rheumatology, 2011, 38, 339-349.	2.0	80
47	Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation, 2011, 81, 162-171.	1.9	100
48	Isolation and Characterization of Mesenchymal Stem Cells from Human Amniotic Membrane. Tissue Engineering - Part C: Methods, 2011, 17, 49-59.	2.1	60
49	Tissue array analysis for the differentiation of gliosis from gliomas. Molecular Medicine Reports, 2011, 4, 451-7.	2.4	8
50	475 CHONDROGENIC DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS (BM-MSCS) GROWN ON COLLAGEN POROUS SCAFFOLDS. Osteoarthritis and Cartilage, 2011, 19, S221.	1.3	0
51	478 REPAIRING ARTICULAR CARTILAGE WITH HUMAN AMNIOTIC MEMBRANE EPITHELIAL AND MESENCHYMAL STEM CELLS. Osteoarthritis and Cartilage, 2011, 19, S222-S223.	1.3	0
52	Bone Marrow Cells Immunomagnetically Selected For CD271+ Antigen Promote <i>In Vitro</i> the Repair of Articular Cartilage Defects. Tissue Engineering - Part A, 2011, 17, 1169-1179.	3.1	44
53	Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell and Tissue Banking, 2010, 11, 183-195.	1.1	69
54	521 SEARCHING FOR A WELL-DEFINED AND EFFICIENT METHOD FOR IN VITRO DIRECTING STEM CELL DIFFERENTIATION INTO THE CHONDROGENIC LINEAGE. Osteoarthritis and Cartilage, 2010, 18, S233-S234.	1.3	0

#	Article	IF	CITATIONS
55	529 PARATHYROID HORMONE-RELATED PROTEIN (PTHRP) PROMOTES CHONDROGENIC DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS (BM-MSCS) GROWN ON TYPE I COLLAGEN SUPPORTS. Osteoarthritis and Cartilage, 2010, 18, S237-S238.	1.3	0
56	530 EFFECTS OF HYPOXIA ON BONE MARROW-MESENCHYMAL STEM CELLS DIFFERENTIATION POTENTIAL. Osteoarthritis and Cartilage, 2010, 18, S238.	1.3	0
57	Evaluation of COX-2, EGFR, and p53 as biomarkers of non-dysplastic oral leukoplakias. Experimental and Molecular Pathology, 2010, 89, 197-203.	2.1	15
58	Multilineage differentiation potential of cells isolated from the human amniotic membrane. Journal of Cellular Biochemistry, 2010, 111, 846-857.	2.6	114
59	Evaluation of <i>Plakophilin-3</i> mRNA as a Biomarker for Detection of Circulating Tumor Cells in Gastrointestinal Cancer Patients. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1432-1440.	2.5	18
60	Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: Donor influence on chondrogenesis. Differentiation, 2010, 80, 155-165.	1.9	25
61	176 EXPRESSION OF MESENCHYMAL STEM CELL MARKERS IN SYNOVIAL MEMBRANES AND OSTEOARTHRITIC CARTILAGE REPAIR. Osteoarthritis and Cartilage, 2009, 17, S103-S104.	1.3	0
62	Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 455, 67-75.	2.8	23
63	Diagnostic accuracy of small breast epithelial mucin mRNA as a marker for bone marrow micrometastasis in breast cancer: a pilot study. Journal of Cancer Research and Clinical Oncology, 2009, 135, 1185-1195.	2.5	18
64	Notch signalling in cancer stem cells. Clinical and Translational Oncology, 2009, 11, 11-19.	2.4	89
65	Biology of BMP signalling and cancer. Clinical and Translational Oncology, 2009, 11, 126-137.	2.4	62
66	Hedgehog signalling as a target in cancer stem cells. Clinical and Translational Oncology, 2009, 11, 199-207.	2.4	41
67	Wnt signalling and cancer stem cells. Clinical and Translational Oncology, 2009, 11, 411-427.	2.4	100
68	La ciclooxigenasa-2 (COX-2) y el factor de crecimiento epidérmico (EFG) en lesiones epiteliales orales premalignas. Revista Española De CirugÃa Oral Y Maxilofacial, 2009, 31, .	0.1	1
69	Origin of renal cell carcinomas. Clinical and Translational Oncology, 2008, 10, 697-712.	2.4	22
70	Bioinformatics approach to mRNA markers discovery for detection of circulating tumor cells in patients with gastrointestinal cancer. Cancer Detection and Prevention, 2008, 32, 236-250.	2.1	29
71	224 IMPROVED TISSUE REPAIR IN ARTICULAR CARTILAGE DEFECTS IN VITRO WITH MSC CD271+. Osteoarthritis and Cartilage, 2008, 16, S105.	1.3	0
72	225 DIFFERENTIATION OF CD-105+ MSC FROM SYNOVIAL MEMBRANE TOWARDS CHONDROCYTE-LIKE CELLS THROUGH SPHEROID FORMATION. Osteoarthritis and Cartilage, 2008, 16, S105.	1.3	0

SILVIA DIAZ-PRADO

#	Article	IF	CITATIONS
73	226 HUMAN AMNIOTIC MEMBRANE TO REPAIR OSTEOARTHRITIC CARTILAGE. Osteoarthritis and Cartilage, 2008, 16, S106.	1.3	0
74	Utility of p53 gene expression for early diagnosis in oral leukoplakias. European Journal of Cancer, Supplement, 2008, 6, 160.	2.2	0
75	In Silico and In Vitro Analysis of Small Breast Epithelial Mucin as a Marker for Bone Marrow Micrometastasis in Breast Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 331-339.	1.6	9
76	Cell and Tissue Transplant Strategies for Joint Lesions. The Open Transplantation Journal, 2008, 2, 21-28.	0.1	8
77	MicroRNA quantitative profiling for micrometastasis detection in gastrointestinal cancer. Journal of Clinical Oncology, 2008, 26, 15058-15058.	1.6	0
78	Role of molecular factors in renal cell carcinoma: a tissue array-analysis. Journal of Clinical Oncology, 2008, 26, 16056-16056.	1.6	0
79	Expression of Wnt gene family and frizzled receptors by quantitative real time PCR in head and neck human carcinomas. Journal of Clinical Oncology, 2008, 26, 17035-17035.	1.6	0
80	Prostate carcinoma and stem cells. Clinical and Translational Oncology, 2007, 9, 66-76.	2.4	9
81	Prostate cancer and Hedgehog signalling pathway. Clinical and Translational Oncology, 2007, 9, 420-428.	2.4	22
82	Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clinical and Translational Oncology, 2007, 9, 694-702.	2.4	49
83	The nuclear genes encoding the internal (KINDI1) and external (KINDE1) alternative NAD(P)H:ubiquinone oxidoreductases of mitochondria from Kluyveromyces lactis. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 199-210.	1.0	31
84	Isolation and characterization of two nuclear genes encoding glutathione and thioredoxin reductases from the yeast Kluyveromyces lactis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 170-175.	2.4	14
85	Cloning Genes From a Library Using a Clustering Strategy and PCR. Molecular Biotechnology, 2004, 26, 35-38.	2.4	8
86	Isolation and transcriptional regulation of theKluyveromyces lactisFBA1(fructose-1,6-bisphosphate) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
87	Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24, 1391-1396.	2.2	10

88	Title is missing!. Biotechnology Letters, 2001, 23, 33-40.	2.2	13
89	New secretory strategies for Kluyveromyces lactis Î ² -galactosidase. Protein Engineering, Design and Selection, 2001, 14, 379-386.	2.1	39