Peter De Wulf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2285431/publications.pdf Version: 2024-02-01

DETED DE WIII E

#	Article	lF	CITATIONS
1	Nuclear Periphery and Telomere Maintenance: TERRA Joins the Stage. Trends in Genetics, 2021, 37, 608-611.	6.7	3
2	The Rio1 protein kinases/ATPases: conserved regulators of growth, division, and genomic stability. Current Genetics, 2019, 65, 457-466.	1.7	14
3	Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Frontiers in Genetics, 2018, 9, 674.	2.3	69
4	Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Research, 2018, 46, 7586-7611.	14.5	19
5	The Mps1 Kinase Modulates the Recruitment and Activity of Cnn1CENP-T at Saccharomyces cerevisiae Kinetochores. Genetics, 2015, 200, 79-90.	2.9	15
6	Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation. Nature Communications, 2015, 6, 6643.	12.8	25
7	Evading Pgp Activity in Drug-Resistant Cancer Cells: A Structural and Functional Study of Antitubulin Furan Metotica Compounds. Molecular Cancer Therapeutics, 2012, 11, 1103-1111.	4.1	12
8	Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nature Cell Biology, 2012, 14, 614-624.	10.3	95
9	Molecular Structures and Interactions in the Yeast Kinetochore. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 395-401.	1.1	7
10	Tension at EMBO's Aneuploidy Workshop. EMBO Reports, 2010, 11, 727-729.	4.5	0
11	A Screen for Kinetochore-Microtubule Interaction Inhibitors Identifies Novel Antitubulin Compounds. PLoS ONE, 2010, 5, e11603.	2.5	16
12	Protein phosphatases take the mitotic stage. Current Opinion in Cell Biology, 2009, 21, 806-815.	5.4	90
13	Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint. PLoS ONE, 2009, 4, e7640.	2.5	70
14	Kinetochore Composition, Formation, and Organization. , 2009, , 1-59.		1
15	Implications for Kinetochore-Microtubule Attachment from the Structure of an Engineered Ndc80 Complex. Cell, 2008, 133, 427-439.	28.9	479
16	Cdc14B and APC/C Tackle DNA Damage. Cell, 2008, 134, 210-212.	28.9	6
17	The yeast DASH complex forms closed rings on microtubules. Nature Structural and Molecular Biology, 2005, 12, 138-143.	8.2	258
18	Probing the ArcA-P Modulon of Escherichia coli by Whole Genome Transcriptional Analysis and Sequence Recognition Profiling. Journal of Biological Chemistry, 2004, 279, 12588-12597.	3.4	179

PETER DE WULF

#	Article	IF	CITATIONS
19	Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes and Development, 2003, 17, 2902-2921.	5.9	256
20	Genome-wide Profiling of Promoter Recognition by the Two-component Response Regulator CpxR-P in Escherichia coli. Journal of Biological Chemistry, 2002, 277, 26652-26661.	3.4	199
21	Optimized synthesis ofL-sorbose by C5-dehydrogenation ofD-sorbitol withGluconobacter oxydans. Biotechnology and Bioengineering, 2000, 69, 339-343.	3.3	41
22	Presence of the Cpx system in bacteria. Microbiology (United Kingdom), 2000, 146, 247-248.	1.8	18
23	Cpx Two-Component Signal Transduction in Escherichia coli : Excessive CpxR-P Levels Underlie CpxA* Phenotypes. Journal of Bacteriology, 2000, 182, 1423-1426.	2.2	41
24	Real-time flow cytometric quantification of GFP expression and Gfp-fluorescence generation in Saccharomyces cerevisiae. Journal of Microbiological Methods, 2000, 42, 57-64.	1.6	15
25	A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli. Molecular Microbiology, 1999, 32, 219-221.	2.5	26
26	A mutational study of the ArcA-P binding sequences in the aldA promoter of Escherichia coli. Molecular Genetics and Genomics, 1999, 261, 170-176.	2.4	18
27	The CpxRA Signal Transduction System of <i>Escherichia coli</i> : Growth-Related Autoactivation and Control of Unanticipated Target Operons. Journal of Bacteriology, 1999, 181, 6772-6778.	2.2	130
28	Regulation of <i>adhE</i> (Encoding Ethanol Oxidoreductase) by the Fis Protein in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 7390-7393.	2.2	14
29	Signal Decay through a Reverse Phosphorelay in the Arc Two-component Signal Transduction System. Journal of Biological Chemistry, 1998, 273, 32864-32869.	3.4	119
30	Aberrant Cell Division and Random FtsZ Ring Positioning in <i>Escherichia coli cpxA</i> * Mutants. Journal of Bacteriology, 1998, 180, 3486-3490.	2.2	28
31	Production of d -ribose by fermentation. Applied Microbiology and Biotechnology, 1997, 48, 141-148.	3.6	46
32	Specific organic acids enhance theD-ribose productivity of a transketolase-defectiveBacillus subtilis strain. Journal of Chemical Technology and Biotechnology, 1997, 70, 311-315.	3.2	2
33	Improved Cellulose Formation by anAcetobacter xylinum Mutant Limited in (Keto)Gluconate Synthesis. Journal of Chemical Technology and Biotechnology, 1996, 67, 376-380.	3.2	63
34	Screening and mutational improvement of a d-ribose secreting Candida pelliculosa strain. Journal of Bioscience and Bioengineering, 1996, 82, 1-7.	0.9	11