
Renato Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2284532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beta-Diversity in Tropical Forest Trees. Science, 2002, 295, 666-669.	12.6	1,176
2	Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science, 2008, 322, 580-582.	12.6	949
3	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	12.6	864
4	Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 864-869.	7.1	763
5	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	9.5	473
6	Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 2004, 92, 214-229.	4.0	443
7	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
8	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	5.8	330
9	High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation, 1994, 3, 21-28.	2.6	322
10	A general framework for the distance–decay of similarity in ecological communities. Ecology Letters, 2008, 11, 904-917.	6.4	312
11	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	2.2	285
12	Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 2006, 9, 575-588.	6.4	280
13	Scaleâ€dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 2013, 101, 1214-1224.	4.0	265
14	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	5.8	235
15	The Importance of Demographic Niches to Tree Diversity. Science, 2006, 313, 98-101.	12.6	215
16	Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122532.	2.6	201
17	Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities. PLoS Biology, 2008, 6, e45.	5.6	187
18	Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecology Letters, 2006, 9, 589-602.	6.4	170

RENATO VALENCIA

#	Article	IF	CITATIONS
19	Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME Journal, 2010, 4, 465-471.	9.8	165
20	The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 2012, 21, 1191-1202.	5.8	135
21	Widespread densityâ€dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 2010, 91, 3675-3685.	3.2	131
22	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	4.1	122
23	NEIGHBORHOOD AND COMMUNITY INTERACTIONS DETERMINE THE SPATIAL PATTERN OF TROPICAL TREE SEEDLING SURVIVAL. Ecology, 2007, 88, 2248-2258.	3.2	117
24	Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology, 2011, 92, 1723-1729.	3.2	112
25	Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, 2017, 550, 105-108.	27.8	106
26	Habitat filtering across tree life stages in tropical forest communities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130548.	2.6	101
27	Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 2014, 11, 6827-6840.	3.3	89
28	Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130502.	2.6	78
29	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
30	Determinants of biased sex ratios and interâ€sex costs of reproduction in dioecious tropical forest trees. American Journal of Botany, 2007, 94, 67-78.	1.7	77
31	Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests: A Comparison of Field Inventory Methods. Biotropica, 2013, 45, 288-298.	1.6	73
32	Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology, 2018, 99, 2272-2283.	3.2	72
33	The Contribution of Rare Species to Community Phylogenetic Diversity across a Global Network of Forest Plots. American Naturalist, 2012, 180, E17-E30.	2.1	67
34	Plant traits predict inter―and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. Journal of Ecology, 2014, 102, 939-952.	4.0	63
35	Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 2016, 19, 1062-1070.	6.4	58
36	Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 2009, 25, 473-482.	1.1	56

RENATO VALENCIA

#	Article	IF	CITATIONS
37	CONTRASTING STRUCTURE AND COMPOSITION OF THE UNDERSTORY IN SPECIES-RICH TROPICAL RAIN FORESTS. Ecology, 2006, 87, 2298-2305.	3.2	55
38	Habitat niche partitioning by 16 species of Myristicaceae in Amazonian Ecuador. Plant Ecology, 2007, 192, 193-207.	1.6	54
39	Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Functional Ecology, 2013, 27, 684-692.	3.6	48
40	Aboveâ€ground forest biomass is not consistently related to wood density in tropical forests. Global Ecology and Biogeography, 2009, 18, 617-625.	5.8	46
41	Seed mass, abundance and breeding system among tropical forest species: do dioecious species exhibit compensatory reproduction or abundances?. Journal of Ecology, 2009, 97, 555-566.	4.0	45
42	Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4197-4205.	2.6	41
43	Climate sensitive size-dependent survival in tropical trees. Nature Ecology and Evolution, 2018, 2, 1436-1442.	7.8	41
44	Phylogeography of a species complex of lowland Neotropical rain forest trees (<i>Carapa</i> ,) Tj ETQq0 0 0 rgB	T /Qverloc	k 19 Tf 50 46
45	Limited carbon and biodiversity coâ€benefits for tropical forest mammals and birds. Ecological Applications, 2016, 26, 1098-1111.	3.8	34
46	Extinction-Rate Estimates for a Modern Neotropical Flora. Conservation Biology, 2002, 16, 1427-1431.	4.7	31
47	Cryptic species and phylogeographical structure in the tree <i>Cedrela odorata</i> L. throughout the Neotropics. Journal of Biogeography, 2013, 40, 732-746.	3.0	31
48	Useful lianas of the Siona-Secoya Indians from Amazonian Ecuador. Economic Botany, 1995, 49, 269-275.	1.7	29
49	Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation, 2017, 26, 669-686.	2.6	29
50	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	4.0	29
51	Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival?. Annals of Botany, 2013, 112, 677-684.	2.9	28
52	Amazon diversification and crossâ€Andean dispersal of the widespread Neotropical tree species <i>Jacaranda copaia</i> (Bignoniaceae). Journal of Biogeography, 2013, 40, 707-719.	3.0	25
53	Plant herbivory responses through changes in leaf quality have no effect on subsequent leafâ€litter decomposition in a neotropical rain forest tree community. New Phytologist, 2015, 207, 817-829.	7.3	25
54	A taxonomic comparison of local habitat niches of tropical trees. Oecologia, 2013, 173, 1491-1498.	2.0	24

Renato Valencia

#	Article	IF	CITATIONS
55	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	3.2	22
56	Filterâ€dispersal assembly of lowland Neotropical rainforests across the Andes. Ecography, 2018, 41, 1763-1775.	4.5	20
57	Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications Biology, 2020, 3, 317.	4.4	20
58	Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR. Remote Sensing, 2016, 8, 9.	4.0	19
59	Composition and structure of a humid montane forest on the Pasochoa volcano, Ecuador. Nordic Journal of Botany, 1992, 12, 239-247.	0.5	17
60	Demography of <i>Oenocarpus bataua</i> and implications for sustainable harvest of its fruit in western Amazon. Population Ecology, 2016, 58, 463-476.	1.2	13
61	Distribution and Community Assembly of Trees Along an Andean Elevational Gradient. Plants, 2019, 8, 326.	3.5	11
62	Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient. Ecology Letters, 2020, 23, 160-171.	6.4	11
63	Consistency of demographic tradeâ€offs across 13 (sub)tropical forests. Journal of Ecology, 2022, 110, 1485-1496.	4.0	11
64	Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests. BMC Ecology, 2012, 12, 3.	3.0	10
65	Landscape diversity patterns and endemism of Araceae in Ecuador. Biodiversity and Conservation, 2004, 13, 1755-1779.	2.6	9
66	Legal and Administrative Regulation of Palms and Other NTFPs in Colombia, Ecuador, Peru and Bolivia. Botanical Review, The, 2011, 77, 327-369.	3.9	9
67	Phylogenetic turnover along local environmental gradients in tropical forest communities. Oecologia, 2016, 182, 547-557.	2.0	9
68	No strong evidence for increasing liana abundance in the Myristicaceae of a Neotropical aseasonal rain forest. Ecology, 2017, 98, 456-466.	3.2	8
69	Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17Âyears. Global Change Biology, 2017, 23, 1232-1239.	9.5	8
70	Scaleâ€dependent drivers of the phylogenetic structure and similarity of tree communities in northwestern Amazonia. Journal of Ecology, 2021, 109, 888-899.	4.0	8
71	Physical, but not chemical, antiherbivore defense expression is related to the clustered spatial distribution of tropical trees in an Amazonian forest. Ecology and Evolution, 2019, 9, 1750-1763.	1.9	8
72	Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. Global Change Biology, 2022, 28, 2895-2909.	9.5	8

Renato Valencia

#	Article	IF	CITATIONS
73	Sex-Specific Flowering Patterns and Demography of the Understorey Rain Forest Tree <i>Iryanthera Hostmannii</i> (Myristicaceae). Tropical Conservation Science, 2013, 6, 637-652.	1.2	7
74	Brownea jaramilloi (Leguminosae: Caesalpinioideae), a new, over-looked species endemic to the Ecuadorian Amazon. Kew Bulletin, 2013, 68, 157-162.	0.9	6
75	Growth strategies of the arborescent palm <i>Iriartea deltoidea</i> in a western Amazonian forest. Botanical Journal of the Linnean Society, 2016, 182, 411-424.	1.6	4
76	Ant Mutualism Increases Long-Term Growth and Survival of a Common Amazonian Tree. American Naturalist, 2016, 188, 567-575.	2.1	4
77	Incidence of Extrafloral Nectaries and Their Relationship with Growth and Survival of Lowland Tropical Rain Forest Trees. Biotropica, 2016, 48, 321-331.	1.6	3
78	Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 2019, 51, 304-310.	1.6	3
79	Habitat filtering of six coexisting <i>Heliconia</i> species in a lowland tropical rain forest in Amazonian Ecuador. Journal of Tropical Ecology, 2019, 35, 91-94.	1.1	3
80	Canopy structure and forest understory conditions in a wet Amazonian forest—No change over the last 20 years. Biotropica, 2020, 52, 1121-1126.	1.6	3
81	A Common But Overlooked New Species in the Hyper-Diverse Genus Inga Mill. from the Northwestern Amazon. Systematic Botany, 2019, 44, 536-547.	0.5	2
82	Environment―and traitâ€mediated scaling of tree occupancy in forests worldwide. Global Ecology and Biogeography, 2019, 28, 1155-1167.	5.8	2
83	Tree community composition, structure and diversity along an elevational gradient in an Andean forest of Northern Ecuador. Journal of Mountain Science, 2021, 18, 2315-2327.	2.0	2
84	Wind dispersal and 1â€year survival of <i>Vataireopsis iglesiasii</i> (Fabaceae) seedlings in a Neotropical lowland rain forest. Biotropica, 0, , .	1.6	1