
Byung-Moo Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2284273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A vitronectinâ€derived peptide prevents and restores alveolar bone loss by modulating bone reâ€modelling and expression of <scp>RANKL</scp> and <scp>ILâ€17A</scp> . Journal of Clinical Periodontology, 2022, 49, 799-813.	4.9	6
2	A vitronectin-derived dimeric peptide suppresses osteoclastogenesis by binding to c-Fms and inhibiting M-CSF signaling. Experimental Cell Research, 2022, 418, 113252.	2.6	4
3	The lamininâ€211â€derived PPFEGCIWN motif accelerates wound reepithelialization and increases phosphoâ€FAKâ€Tyr397 and Rac1â€GTP levels in a rat excisional wound splinting model. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1100-1112.	2.7	0
4	A lamininâ€211â€derived bioactive peptide promotes the osseointegration of a sandblasted, largeâ€grit, acidâ€etched titanium implant. Journal of Biomedical Materials Research - Part A, 2020, 108, 1214-1222.	4.0	14
5	A Vitronectin-Derived Bioactive Peptide Improves Bone Healing Capacity of SLA Titanium Surfaces. Materials, 2019, 12, 3400.	2.9	15
6	A Laminin-Derived Functional Peptide, PPFEGCIWN, Promotes Bone Formation on Sandblasted, Large-Grit, Acid-Etched Titanium Implant Surfaces. International Journal of Oral and Maxillofacial Implants, 2019, 34, 838-844.	1.4	5
7	A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death and Differentiation, 2018, 25, 268-281.	11.2	49
8	MicroRNA-146a-5p Limits Elevated TGF-β Signal during Cell Senescence. Molecular Therapy - Nucleic Acids, 2017, 7, 335-338.	5.1	7
9	Adhesion and spreading of osteoblast-like cells on surfaces coated with laminin-derived bioactive core peptides. Data in Brief, 2015, 5, 411-415.	1.0	6
10	A Transcriptional Roadmap to the Senescence and Differentiation of Human Oral Keratinocytes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 20-32.	3.6	25
11	Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering. Biomaterials, 2015, 73, 96-109.	11.4	27
12	Cellular response of silk fibroin nanofibers containing silver nanoparticles In vitro. Macromolecular Research, 2014, 22, 796-803.	2.4	8
13	The effect of the DLTIDDSYWYRI motif of the human laminin α2 chain on implant osseointegration. Biomaterials, 2013, 34, 4027-4037.	11.4	27
14	Protein kinase Cα/β inhibitor Gö6976 promotes PC12 cell adhesion and spreading through membrane recruitment and activation of protein kinase Cδ. Experimental Cell Research, 2013, 319, 153-160.	2.6	7
15	Cellular response to poly(vinyl alcohol) nanofibers coated with biocompatible proteins and polysaccharides. Applied Surface Science, 2012, 258, 6914-6922.	6.1	14
16	The potential of laminin-2-biomimetic short peptide to promote cell adhesion, spreading and migration by inducing membrane recruitment and phosphorylation of PKCl´. Biomaterials, 2012, 33, 3967-3979.	11.4	15
17	The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. International Journal of Molecular Medicine, 2011, 28, 1001-11.	4.0	19
18	Epidermal cellular response to poly(vinyl alcohol) nanofibers containing silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 78, 334-342.	5.0	59

Βγυνς-Μοο Μιν

#	Article	IF	CITATIONS
19	Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer, 2010, 51, 1320-1327.	3.8	161
20	The effect of a laminin-5-derived peptide coated onto chitin microfibers on re-epithelialization in early-stage wound healing. Biomaterials, 2010, 31, 4725-4730.	11.4	43
21	Comparison of Processed Nerve Allograft and Laminin Derived Peptide Incorporated Nerve Conduit for Peripheral Nerve Regeneration. The Journal of the Korean Orthopaedic Association, 2010, 45, 52.	0.1	0
22	A Biologically Active Sequence of the Laminin α2 Large Globular 1 Domain Promotes Cell Adhesion through Syndecan-1 by Inducing Phosphorylation and Membrane Localization of Protein Kinase Cδ. Journal of Biological Chemistry, 2009, 284, 31764-31775.	3.4	20
23	α3β1 integrin promotes cell survival via multiple interactions between 14-3-3 isoforms and proapoptotic proteins. Experimental Cell Research, 2009, 315, 3187-3200.	2.6	29
24	Plasma-treated silk fibroin nanofibers for skin regeneration. International Journal of Biological Macromolecules, 2009, 44, 222-228.	7.5	94
25	Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. International Journal of Biological Macromolecules, 2008, 42, 324-334.	7.5	77
26	Collagen-Based Biomimetic Nanofibrous Scaffolds: Preparation and Characterization of Collagen/Silk Fibroin Bicomponent Nanofibrous Structures. Biomacromolecules, 2008, 9, 1106-1116.	5.4	147
27	Osteogenic potential of embryonic stem cells in tooth sockets. International Journal of Molecular Medicine, 2008, 21, 539-44.	4.0	9
28	Vacuolar-type H+-ATPase-mediated acidosis promotes in vitro osteoclastogenesis via modulation of cell migration. International Journal of Molecular Medicine, 2007, 19, 393-400.	4.0	15
29	Biomimetic Nanofibrous Scaffolds:Â Preparation and Characterization of PGA/Chitin Blend Nanofibers. Biomacromolecules, 2006, 7, 635-643.	5.4	140
30	Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. International Journal of Biological Macromolecules, 2006, 38, 165-173.	7.5	170
31	Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006, 27, 1452-1461.	11.4	789
32	Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006, 27, 3934-3944.	11.4	308
33	Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells. Macromolecular Bioscience, 2006, 6, 285-292.	4.1	144
34	Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. Journal of Biomedical Materials Research - Part A, 2005, 74A, 640-651.	4.0	44
35	In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 2005, 95, 193-200.	2.6	240
36	βig-h3 Induces Keratinocyte Differentiation via Modulation of Involucrin and Transglutaminase Expression through the Integrin α3β1 and the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 21629-21637.	3.4	42

Βγυνς-Μοο Μιν

#	Article	IF	CITATIONS
37	The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 α3 chain is crucial for integrin α3β1 binding and cell adhesion. Experimental Cell Research, 2005, 304, 317-327.	2.6	77
38	Retinoic acid delays keratinocyte senescence by suppression of βig-h3 and p16 expression and induction of telomerase activity. International Journal of Molecular Medicine, 2004, 13, 25.	4.0	1
39	Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 2004, 45, 7137-7142.	3.8	418
40	Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004, 25, 1289-1297.	11.4	1,049
41	Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. International Journal of Biological Macromolecules, 2004, 34, 223-230.	7.5	186
42	Retinoic acid delays keratinocyte senescence by suppression of betaig-h3 and p16 expression and induction of telomerase activity. International Journal of Molecular Medicine, 2004, 13, 25-31.	4.0	4
43	Phospholipase C-γ1 is required for subculture-induced terminal differentiation of normal human oral keratinocytes. International Journal of Molecular Medicine, 2003, 11, 491.	4.0	1
44	Common genes responsible for differentiation and senescence of human mucosal and epidermal keratinocytes. International Journal of Molecular Medicine, 2003, 12, 319.	4.0	8
45	Common genes responsible for differentiation and senescence of human mucosal and epidermal keratinocytes. International Journal of Molecular Medicine, 2003, 12, 319-25.	4.0	12
46	Concurrence of replicative senescence and elevated expression of p16INK4A with subculture-induced but not calcium-induced differentiation in normal human oral keratinocytes. Archives of Oral Biology, 2000, 45, 809-818.	1.8	24
47	Terminal Differentiation of Normal Human Oral Keratinocytes Is Associated with Enhanced Cellular TGF-β and Phospholipase C-γ1 Levels and Apoptotic Cell Death. Experimental Cell Research, 1999, 249, 377-385.	2.6	48
48	Immortalization of normal human oral keratinocytes with type 16 human papillomavirus. Carcinogenesis, 1991, 12, 1627-1631.	2.8	209
49	Vacuolar-type H+-ATPase-mediated acidosis promotes in vitro osteoclastogenesis via modulation of cell migration. International Journal of Molecular Medicine, 0, , .	4.0	7