Kristin Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2284004/publications.pdf

Version: 2024-02-01

257450 345221 4,123 38 24 36 h-index citations g-index papers 39 39 39 4137 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunity-Related Genes and Gene Families inAnopheles gambiae. Science, 2002, 298, 159-165.	12.6	845
2	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	12.6	550
3	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
4	Towards the elements of successful insect RNAi. Journal of Insect Physiology, 2013, 59, 1212-1221.	2.0	399
5	An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16327-16332.	7.1	167
6	Pathogenomics of <i>Culex quinquefasciatus</i> and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010, 330, 88-90.	12.6	150
7	Anopheles gambiae SRPN2 facilitates midgut invasion by the malaria parasite Plasmodium berghei. EMBO Reports, 2005, 6, 891-897.	4.5	146
8	In Vivo Identification of Novel Regulators and Conserved Pathways of Phagocytosis in A. gambiae. Immunity, 2005, 23, 65-73.	14.3	126
9	Serpins in arthropod biology. Seminars in Cell and Developmental Biology, 2017, 62, 105-119.	5.0	121
10	Anopheles and Plasmodium: from laboratory models to natural systems in the field. EMBO Reports, 2006, 7, 1285-1289.	4.5	118
11	Characterization of a regulatory unit that controls melanization and affects longevity of mosquitoes. Cellular and Molecular Life Sciences, 2011, 68, 1929-1939.	5 . 4	110
12	Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16858-16863.	7.1	93
13	Discovery of <i>Plasmodium</i> modulators by genome-wide analysis of circulating hemocytes in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21270-21275.	7.1	91
14	Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence. Annual Review of Entomology, 2018, 63, 145-167.	11.8	88
15	The roles of serpins in mosquito immunology and physiology. Journal of Insect Physiology, 2013, 59, 138-147.	2.0	80
16	Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, <i>Anopheles gambiae</i> Giles. Journal of Experimental Biology, 2014, 217, 1238-45.	1.7	58
17	Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae. Journal of Visualized Experiments, 2015, , .	0.3	57
18	Invasion of mosquito salivary glands by malaria parasites: Prerequisites and defense strategies. International Journal for Parasitology, 2010, 40, 1229-1235.	3.1	54

#	Article	IF	CITATIONS
19	The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Cellular Microbiology, 2008, 10, 891-898.	2.1	52
20	Mosquito-fungus interactions and antifungal immunity. Insect Biochemistry and Molecular Biology, 2019, 111, 103182.	2.7	42
21	CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes. Insect Biochemistry and Molecular Biology, 2016, 71, 106-115.	2.7	33
22	Culicoides–virus interactions: infection barriers and possible factors underlying vector competence. Current Opinion in Insect Science, 2017, 22, 7-15.	4.4	33
23	Anopheles gambiae hemocytes exhibit transient states of activation. Developmental and Comparative Immunology, 2016, 55, 119-129.	2.3	32
24	Inducing <scp>RNA</scp> interference in the arbovirus vector, <i><scp>C</scp>ulicoides sonorensis</i> . Insect Molecular Biology, 2015, 24, 105-114.	2.0	28
25	Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae). PLoS ONE, 2017, 12, e0188865.	2.5	23
26	Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes. MSphere, 2021, 6, e0064621.	2.9	21
27	Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes. PLoS ONE, 2012, 7, e48689.	2.5	19
28	Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. International Journal for Parasitology, 2013, 43, 869-874.	3.1	19
29	The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae. Developmental and Comparative Immunology, 2018, 85, 125-133.	2.3	17
30	CLIPB10 is a Terminal Protease in the Regulatory Network That Controls Melanization in the African Malaria Mosquito Anopheles gambiae. Frontiers in Cellular and Infection Microbiology, 2020, 10, 585986.	3.9	16
31	Crystal structure of native <i>Anopheles gambiae</i> serpinâ€2, a negative regulator of melanization in mosquitoes. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1999-2003.	2.6	11
32	Small RNA-Seq Analysis Reveals miRNA Expression Dynamics Across Tissues in the Malaria Vector, Anopheles gambiae. G3: Genes, Genomes, Genetics, 2019, 9, 1507-1517.	1.8	10
33	Structural and Inhibitory Effects of Hinge Loop Mutagenesis in Serpin-2 from the Malaria Vector Anopheles gambiae. Journal of Biological Chemistry, 2015, 290, 2946-2956.	3.4	7
34	RNAi Trigger Delivery into Anopheles gambiae Pupae. Journal of Visualized Experiments, 2016, , .	0.3	6
35	A global \$\$Anopheles gambiae\$\$ gene co-expression network constructed from hundreds of experimental conditions with missing values. BMC Bioinformatics, 2022, 23, 170.	2.6	4
36	1.45â€Ã resolution structure of SRPN18 from the malaria vector <i>Anopheles gambiae</i> Crystallographica Section F, Structural Biology Communications, 2016, 72, 853-862.	0.8	3

3

#	Article	IF	CITATIONS
37	Modulation of Mosquito Immune Defenses as a Control Strategy. , 2017, , 59-89.		1
38	Patterns of Fungal Community Assembly Across Two Culex Mosquito Species. Frontiers in Ecology and Evolution, 0, 10 , .	2.2	1