
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283998/publications.pdf Version: 2024-02-01

YOU-CHUN WANC

#	Article	IF	CITATIONS
1	Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584, 115-119.	27.8	1,524
2	The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell, 2020, 182, 1284-1294.e9.	28.9	1,362
3	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	27.8	1,350
4	BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 2022, 608, 593-602.	27.8	889
5	Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 680-686.	6.5	638
6	A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586, 572-577.	27.8	630
7	A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host and Microbe, 2020, 28, 124-133.e4.	11.0	540
8	Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369, 1505-1509.	12.6	358
9	SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell, 2021, 184, 2362-2371.e9.	28.9	332
10	Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduction and Targeted Therapy, 2021, 6, 134.	17.1	331
11	The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerging Microbes and Infections, 2022, 11, 1-5.	6.5	320
12	Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nature Protocols, 2020, 15, 3699-3715.	12.0	291
13	Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 2020, 183, 1013-1023.e13.	28.9	227
14	Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 2022, 185, 1728-1744.e16.	28.9	211
15	Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature, 2022, 603, 919-925.	27.8	146
16	Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Research, 2021, 31, 732-741.	12.0	124
17	Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nature Microbiology, 2021, 6, 51-58.	13.3	113
18	Current status on the development of pseudoviruses for enveloped viruses. Reviews in Medical Virology, 2018, 28, e1963.	8.3	112

#	Article	IF	CITATIONS
19	A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology, 2013, 10, 14.	2.0	102
20	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 0, , .	27.8	90
21	Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nature Communications, 2021, 12, 4210.	12.8	82
22	Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Scientific Reports, 2017, 7, 45552.	3.3	80
23	CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants delta, alpha, beta, and gamma. Signal Transduction and Targeted Therapy, 2021, 6, 347.	17.1	64
24	Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 346.	17.1	60
25	A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Research, 2022, 32, 269-287.	12.0	54
26	Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system. Scientific Reports, 2017, 7, 42769.	3.3	50
27	Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization. Communications Biology, 2021, 4, 1196.	4.4	49
28	A Human DPP4-Knockin Mouse's Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV. Viruses, 2018, 10, 448.	3.3	42
29	ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants. Emerging Microbes and Infections, 2022, 11, 1488-1499.	6.5	40
30	Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discovery, 2022, 8, .	6.7	40
31	Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	40
32	A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nature Communications, 2021, 12, 5000.	12.8	37
33	A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system. Human Vaccines and Immunotherapeutics, 2017, 13, 1811-1817.	3.3	36
34	Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants. Cell Research, 2021, 31, 1130-1133.	12.0	34
35	Genetic and Neutralization Properties of HIV-1 env Clones From Subtype B/BC/AE Infections in China. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 47, 535-543.	2.1	32
36	Detection of HPV types and neutralizing antibodies in Gansu province, China. Journal of Medical Virology, 2009, 81, 693-702.	5.0	26

#	Article	IF	CITATIONS
37	Impact of HIVâ€1 genetic diversity in China on the measurement of viral load. Journal of Medical Virology, 2008, 80, 1-8.	5.0	25
38	A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China. PLoS ONE, 2012, 7, e33392.	2.5	25
39	Development of a Triple-Color Pseudovirion-Based Assay to Detect Neutralizing Antibodies against Human Papillomavirus. Viruses, 2016, 8, 107.	3.3	25
40	RIG-I and IL-6 are negative-feedback regulators of STING induced by double-stranded DNA. PLoS ONE, 2017, 12, e0182961.	2.5	25
41	Reduced sensitivity of the SARS-CoV-2 Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination. Emerging Microbes and Infections, 2022, 11, 18-29.	6.5	25
42	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24
43	A pan-sarbecovirus vaccine induces highly potent and durable neutralizing antibody responses in non-human primates against SARS-CoV-2 Omicron variant. Cell Research, 2022, 32, 495-497.	12.0	24
44	The Antigenicity of Epidemic SARS-CoV-2 Variants in the United Kingdom. Frontiers in Immunology, 2021, 12, 687869.	4.8	23
45	A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice. Vaccine, 2016, 34, 2729-2736.	3.8	21
46	Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discovery, 2021, 7, 21.	6.7	20
47	Genotypic and Phenotypic Characterization of HIV-1 CRF01_AE env Molecular Clones From Infections in China. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 53, 440-450.	2.1	19
48	<i>In vitro</i> and <i>in vivo</i> efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Human Vaccines and Immunotherapeutics, 2019, 15, 2286-2294.	3.3	19
49	A second functional furin site in the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 182-194.	6.5	19
50	Multicenter assessment of shotgun metagenomics for pathogen detection. EBioMedicine, 2021, 74, 103649.	6.1	19
51	Development and optimization of a sensitive pseudovirus-based assay for HIV-1 neutralizing antibodies detection using A3R5 cells. Human Vaccines and Immunotherapeutics, 2018, 14, 199-208.	3.3	18
52	Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerging Microbes and Infections, 2021, 10, 1574-1588.	6.5	18
53	Antigenicity comparison of SARS oVâ€2 Omicron sublineages with other variants contained multiple mutations in RBD. MedComm, 2022, 3, e130.	7.2	18
54	Detection of HPV types and neutralizing antibodies in women with genital warts in Tianjin City, China. Virologica Sinica, 2010, 25, 8-17.	3.0	17

#	Article	IF	CITATIONS
55	N463 Glycosylation Site on V5 Loop of a Mutant gp120 Regulates the Sensitivity of HIV-1 to Neutralizing Monoclonal Antibodies VRC01/03. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69, 270-277.	2.1	17
56	Naturally Occurring Single Amino Acid Substitution in the L1 Major Capsid Protein of Human Papillomavirus Type 16: Alteration of Susceptibility to Antibody-Mediated Neutralization. Journal of Infectious Diseases, 2017, 216, 867-876.	4.0	17
57	Optimization and proficiency testing of a pseudovirus-based assay for detection of HIV-1 neutralizing antibody in China. Journal of Virological Methods, 2012, 185, 267-275.	2.1	16
58	Optimization and validation of a high throughput method for detecting neutralizing antibodies against human papillomavirus (HPV) based on pseudovirons. Journal of Medical Virology, 2014, 86, 1542-1555.	5.0	16
59	Antigenic variations of recent street rabies virus. Emerging Microbes and Infections, 2019, 8, 1584-1592.	6.5	16
60	Three epitope-distinct human antibodies from RenMab mice neutralize SARS-CoV-2 and cooperatively minimize the escape of mutants. Cell Discovery, 2021, 7, 53.	6.7	14
61	Comparisons of the genetic and neutralization properties of HIV-1 subtype C and CRF07/08_BC env molecular clones isolated from infections in China. Virus Research, 2011, 155, 137-146.	2.2	13
62	Comparison between the automated Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 test version 2.0 assay and its version 1 and Nuclisens HIV-1 EasyQ version 2.0 assays when measuring diverse HIV-1 genotypes in China. Journal of Clinical Virology, 2012, 53, 33-37.	3.1	13
63	Structure-based analyses of neutralization antibodies interacting with naturally occurring SARS-CoV-2 RBD variants. Cell Research, 2021, 31, 1126-1129.	12.0	13
64	Mutation L33M in the HR1 region of HIV-1 gp41 may play a role in T20 resistance. Journal of Clinical Virology, 2009, 45, 255-258.	3.1	12
65	Antibody Cocktail Exhibits Broad Neutralization Activity Against SARS-CoV-2 and SARS-CoV-2 Variants. Virologica Sinica, 2021, 36, 934-947.	3.0	12
66	Performance of the Abbott RealTimeâ,,¢ HIV-1 assay for quantification of HIV-1 clades prevalent in China. Journal of Clinical Virology, 2008, 41, 305-309.	3.1	11
67	Comparative Evaluation of the COBAS AmpliPrep/COBAS TaqMan HIV Type 1 Test (CAP/CTM) and VERSANT HIV Type 1 RNA 3.0 Assay (bDNA) for Quantifying HIV Type 1 Viral Loads in China. AIDS Research and Human Retroviruses, 2008, 24, 1365-1373.	1.1	11
68	Performance of NucliSens HIV-1 EasyQ Version 2.0 Compared with Six Commercially Available Quantitative Nucleic Acid Assays for Detection of HIV-1 in China. Molecular Diagnosis and Therapy, 2010, 14, 305-316.	3.8	10
69	HIV-1 pseudoviruses constructed in China regulatory laboratory. Emerging Microbes and Infections, 2020, 9, 32-41.	6.5	10
70	The antigenicity of SARS-CoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain. Signal Transduction and Targeted Therapy, 2022, 7, 18.	17.1	9
71	Effect of the maturation of neutralizing antibodies on human immunodeficiency virus (HIV) envelope evolution in HIV-infected subjects. Infection, Genetics and Evolution, 2016, 38, 82-89.	2.3	8
72	Biodistribution and residence time of adenovector serotype 5 in normal and immunodeficient mice and rats detected with bioluminescent imaging. Scientific Reports, 2017, 7, 3597.	3.3	8

#	Article	IF	CITATIONS
73	Screening and Identification of Marburg Virus Entry Inhibitors Using Approved Drugs. Virologica Sinica, 2020, 35, 235-239.	3.0	8
74	Monitoring Neutralization Property Change of Evolving Hantaan and Seoul Viruses with aÂNovel Pseudovirus-Based Assay. Virologica Sinica, 2021, 36, 104-112.	3.0	8
75	The first Chinese national standards for SARS-CoV-2 neutralizing antibody. Vaccine, 2021, 39, 3724-3730.	3.8	8
76	Characterization of Chronic Hepatitis E Virus Infection in Immunocompetent Rabbits. Viruses, 2022, 14, 1252.	3.3	8
77	Sequential treatment with aT19â€ ⁻ cells generates memory CAR-T cells and prolongs the lifespan of Raji-B-NDG mice. Cancer Letters, 2020, 469, 162-172.	7.2	7
78	Cellular tropism and antigenicity of mink-derived SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2021, 6, 196.	17.1	7
79	Standardised neutralising antibody assays are needed for evaluating COVID-19 vaccines. EBioMedicine, 2021, 73, 103677.	6.1	6
80	Screening and identification of HTNVpv entry inhibitors with high-throughput pseudovirus-based chemiluminescence. Virologica Sinica, 2022, 37, 531-537.	3.0	6
81	Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerging Microbes and Infections, 2022, 11, 1474-1487.	6.5	6
82	Performance of the Automated COBAS AmpliPrep/COBAS TaqMan HIV-1 Test on a Genetically Diverse Panel of Specimens from China: Comparison to the COBAS Amplicor HIV-1 Monitor Test, v1.5. Intervirology, 2010, 53, 221-228.	2.8	5
83	Development and Evaluation of a National Reference Panel of HIV-1 Protease and Reverse Transcriptase Drug-Resistance Mutations for HIV-1 Genotypic Resistance Assays in China. Molecular Diagnosis and Therapy, 2010, 14, 31-41.	3.8	5
84	Three amino acid residues in the envelope of human immunodeficiency virus type 1 CRF07_BC regulate viral neutralization susceptibility to the human monoclonal neutralizing antibody IgG1b12. Virologica Sinica, 2014, 29, 299-307.	3.0	5
85	Structural characterization of a neutralizing mAb H16.001, a potent candidate for a common potency assay for various HPV16 VLPs. Npj Vaccines, 2020, 5, 89.	6.0	5
86	Unmethylated CpG motif-containing genomic DNA fragments of bacillus calmette-guerin improves immune response towards a DNA vaccine for COVID-19. Vaccine, 2021, 39, 6050-6056.	3.8	5
87	Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorganic Chemistry, 2021, 115, 105196.	4.1	5
88	The Impact of Natural and Glycosylation Mutations in the SARS-CoV-2 Spike Protein on Viral Infectivity and Antigenicity. SSRN Electronic Journal, 0, , .	0.4	5
89	Aggregation of highâ€frequency RBD mutations of SARSâ€CoVâ€2 with three VOCs did not cause significant antigenic drift. Journal of Medical Virology, 2022, , .	5.0	5
90	Analysis of SARS-CoV-2 variants B.1.617: host tropism, proteolytic activation, cell–cell fusion, and neutralization sensitivity. Emerging Microbes and Infections, 2022, 11, 1024-1036.	6.5	5

#	Article	IF	CITATIONS
91	Comparative Evaluation of the ViroSeqâ,,¢ HIV-1 Genotyping System and an In-House Method for Analysis of HIV-1 Drug-Resistance Mutations in China. Molecular Diagnosis and Therapy, 2011, 15, 41-52.	3.8	4
92	Comparison of the genotypic and phenotypic properties of HIV-1 standard subtype B and subtype B/B′ <i>env</i> molecular clones derived from infections in China. Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	4
93	A practical method for evaluating the in vivo efficacy of EVA-71 vaccine using a hSCARB2 knock-in mouse model. Emerging Microbes and Infections, 2021, 10, 1180-1190.	6.5	4
94	The effect of human immunodeficiency virus type 1 (HIV-1) gp41 variability on antibody detection. Archives of Virology, 2010, 155, 1813-1822.	2.1	3
95	Phenotypic Analysis of HIV-1 Genotypic Drug-Resistant Isolates from China, Using a Single-Cycle System. Molecular Diagnosis and Therapy, 2011, 15, 293-301.	3.8	3
96	Neutralizing antibodies against adenovirus type 2 in normal and HIV-1-infected subjects: Implications for use of Ad2 vectors in vaccines. Human Vaccines and Immunotherapeutics, 2017, 13, 1433-1440.	3.3	3
97	Simultaneous quantification of major capsid protein of human papillomavirus 16 and human papillomavirus 18 in multivalent human papillomavirus vaccines by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2020, 1619, 460962.	3.7	3
98	Potential intestinal infection and faecalâ€oral transmission of human coronaviruses. Reviews in Medical Virology, 2022, 32, e2363.	8.3	3
99	Regulation and quality evaluation system for HIV diagnostics in China. Biologicals, 2016, 44, 111-116.	1.4	2
100	Infectivity and antigenicity of pseudoviruses with high-frequency mutations of SARS-CoV-2 identified in Portugal. Archives of Virology, 2022, 167, 459-470.	2.1	2
101	A high-throughput single cell-based antibody discovery approach against the full-length SARS-CoV-2 spike protein suggests a lack of neutralizing antibodies targeting the highly conserved S2 domain. Briefings in Bioinformatics, 2022, 23	6.5	2