List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228372/publications.pdf Version: 2024-02-01

Μοιζα Ρανιίν

#	Article	IF	CITATIONS
1	Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers, 2022, 14, 1343.	3.7	7
2	The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity—In Vitro Correlation Analysis on THP-1 Macrophages. International Journal of Molecular Sciences, 2022, 23, 6197.	4.1	9
3	Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. International Journal of Molecular Sciences, 2021, 22, 5565.	4.1	5
4	How Cancer Cells Invade Bladder Epithelium and Form Tumors: The Mouse Bladder Tumor Model as a Model of Tumor Recurrence in Patients. International Journal of Molecular Sciences, 2021, 22, 6328.	4.1	4
5	Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. International Journal of Molecular Sciences, 2021, 22, 8610.	4.1	13
6	The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. BioMedical Engineering OnLine, 2021, 20, 85.	2.7	3
7	Adhesion and Stiffness of Detached Breast Cancer Cells In Vitro: Co-Treatment with Metformin and 2-Deoxy-d-glucose Induces Changes Related to Increased Metastatic Potential. Biology, 2021, 10, 873.	2.8	2
8	Metabolic profiling of attached and detached metformin and 2-deoxy-D-glucose treated breast cancer cellsÂreveals adaptive changes in metabolome of detached cells. Scientific Reports, 2021, 11, 21354.	3.3	9
9	In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Molecular Imaging and Biology, 2020, 22, 1469-1488.	2.6	14
10	Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 7545.	4.1	5
11	Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology, 2020, 432, 152364.	4.2	41
12	Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 7030.	4.1	2
13	Comparison of the effects of metformin on MDA-MB-231 breast cancer cells in a monolayer culture and in tumor spheroids as a function of nutrient concentrations. Biochemical and Biophysical Research Communications, 2019, 515, 296-302.	2.1	6
14	Multimodal magnetic nanoparticles for biomedical applications: importance of characterization on biomimetic in vitro models. , 2019, , 241-283.		0
15	How cancer cells attach to urinary bladder epithelium in vivo: study of the early stages of tumorigenesis in an orthotopic mouse bladder tumor model. Histochemistry and Cell Biology, 2019, 151, 263-273.	1.7	8
16	Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochemistry and Cell Biology, 2018, 149, 45-59.	1.7	30
17	Nucleosides block AICAR-stimulated activation of AMPK in skeletal muscle and cancer cells. American Journal of Physiology - Cell Physiology, 2018, 315, C803-C817.	4.6	17
18	Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicology Letters, 2017, 270, 108-118.	0.8	14

#	Article	IF	CITATIONS
19	Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells. Toxicology in Vitro, 2017, 41, 12-20.	2.4	21
20	The Effect of Different Types of Nanoparticles on FUS and TDP-43 Solubility and Subcellular Localization. Neurotoxicity Research, 2017, 32, 325-339.	2.7	1
21	Modelling FUS Mislocalisation in an In Vitro Model of Innervated Human Muscle. Journal of Molecular Neuroscience, 2017, 62, 318-328.	2.3	8
22	Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Scientific Reports, 2017, 7, 1761.	3.3	47
23	Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona. PLoS ONE, 2017, 12, e0169552.	2.5	107
24	In vitro assessment of potential bladder papillary neoplasm treatment with functionalized polyethyleneimine coated magnetic nanoparticles. Acta Chimica Slovenica, 2017, 64, 543-548.	0.6	2
25	Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells. PLoS ONE, 2016, 11, e0154747.	2.5	16
26	Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer. International Journal of Applied Electromagnetics and Mechanics, 2015, 49, 145-155.	0.6	25
27	New Insights into the Mechanisms of Gene Electrotransfer – Experimental and Theoretical Analysis. Scientific Reports, 2015, 5, 9132.	3.3	41
28	Comparison of two automatic cellâ€counting solutions for fluorescent microscopic images. Journal of Microscopy, 2015, 260, 107-116.	1.8	17
29	siRNA delivery into cultured primary human myoblasts – optimization of electroporation parameters and theoretical analysis. Bioelectromagnetics, 2015, 36, 551-563.	1.6	15
30	Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles. International Journal of Nanomedicine, 2015, 10, 1449.	6.7	32
31	Electrotransfection and Lipofection Show Comparable Efficiency for In Vitro Gene Delivery of Primary Human Myoblasts. Journal of Membrane Biology, 2015, 248, 273-283.	2.1	12
32	Automatic adaptation of filter sequences for cell counting. , 2015, , .		1
33	Automatic Cell Counter for cell viability estimation. , 2014, , .		6
34	Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency. Journal of Membrane Biology, 2014, 247, 1259-1267.	2.1	24
35	Effect of different parameters used for <i>in vitro</i> gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. Journal of Gene Medicine, 2013, 15, 169-181.	2.8	46
36	Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. International Journal of Nanomedicine, 2013, 8, 919.	6.7	39

#	Article	IF	CITATIONS
37	A numerical analysis of multicellular environment for modeling tissue electroporation. Applied Physics Letters, 2012, 100, .	3.3	44
38	Gene Electrotransfer. Behavior Research Methods, 2012, 15, 77-104.	4.0	5
39	The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry, 2012, 83, 38-45.	4.6	18
40	Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer in vitro . Journal of Visualized Experiments, 2011, , .	0.3	1
41	The Role of Electrophoresis in Gene Electrotransfer. Journal of Membrane Biology, 2010, 236, 75-79.	2.1	42
42	Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and Gene Electrotransfer. Journal of Membrane Biology, 2010, 236, 87-95.	2.1	19
43	Analysis and Comparison of Electrical Pulse Parameters for Gene Electrotransfer of Two Different Cell Lines. Journal of Membrane Biology, 2010, 236, 97-105.	2.1	22
44	Electroâ€mediated gene transfer and expression are controlled by the lifeâ€time of DNA/membrane complex formation. Journal of Gene Medicine, 2010, 12, 117-125.	2.8	104
45	Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry, 2010, 79, 265-271.	4.6	30
46	Magnetization State in Magnetic Nanoparticle Agglomerates. , 2010, , .		2
47	Numerical optimization of gene electrotransfer into muscle tissue. BioMedical Engineering OnLine, 2010, 9, 66.	2.7	28
48	Numerical study of effective permeability of soft-magnetic composites with conductive inclusions. Journal of Applied Physics, 2009, 105, 07D546.	2.5	8
49	The Effective Conductivity and the Induced Transmembrane Potential in Dense Cell System Exposed to DC and AC Electric Fields. IEEE Transactions on Plasma Science, 2009, 37, 99-106.	1.3	10
50	Mechanisms involved in gene electrotransfer using high- and low-voltage pulses — An in vitro study. Bioelectrochemistry, 2009, 74, 265-271.	4.6	110
51	Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation — Relation between short-lived and long-lived pores. Bioelectrochemistry, 2008, 74, 38-46.	4.6	100
52	The effect of complex permeability and agglomeration on composite magnetic systems: A three-dimensional numerical analysis and comparison with analytical models. Journal of Applied Physics, 2008, 103, 07D924.	2.5	16
53	Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes. Behavior Research Methods, 2008, , 165-226.	4.0	44
54	Electroporation in dense cell suspension—Theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 12-23	2.4	82

#	Article	IF	CITATIONS
55	Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. BioMedical Engineering OnLine, 2007, 6, 37.	2.7	68
56	Effect of Cell Electroporation on the Conductivity of a Cell Suspension. Biophysical Journal, 2005, 88, 4378-4390.	0.5	248
57	The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochemistry, 2004, 63, 311-315.	4.6	27
58	Effective-susceptibility tensor for a composite with ferromagnetic inclusions: Enhancement of effective-media theory and alternative ferromagnetic approach. Journal of Applied Physics, 2004, 95, 6289-6293.	2.5	33
59	Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal, 2003, 32, 519-528.	2.2	197
60	Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis. Biophysical Journal, 2003, 85, 719-729.	0.5	94
61	Monte-Carlo Simulation of Light Transport for NIRS Measurements in Tumors of Elliptic Geometry. Advances in Experimental Medicine and Biology, 2003, 530, 41-49.	1.6	5
62	Effective conductivity of cell suspensions. IEEE Transactions on Biomedical Engineering, 2002, 49, 77-80.	4.2	56
63	Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Transactions on Biomedical Engineering, 2002, 49, 605-612.	4.2	150