
Christopher H Gammons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chemical Geology, 2011, 283, 3-17.	3.3	238
2	The disproportionation of gold(I) chloride complexes at 25 to 200°C. Geochimica Et Cosmochimica Acta, 1997, 61, 1971-1983.	3.9	164
3	Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes. Water Resources Research, 2003, 39, .	4.2	155
4	The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. Journal of Hydrology, 2006, 328, 319-330.	5.4	130
5	The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 °C. Chemical Geology, 2005, 217, 147-169.	3.3	126
6	Hydrothermal geochemistry of electrum; thermodynamic constraints. Economic Geology, 1995, 90, 420-432.	3.8	125
7	Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA. Geochimica Et Cosmochimica Acta, 2005, 69, 2505-2516.	3.9	115
8	Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chemical Geology, 2005, 222, 249-267.	3.3	112
9	Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH. Geochimica Et Cosmochimica Acta, 2005, 69, 3747-3758.	3.9	93
10	Geochemistry of the rare-earth elements and uranium in the acidic Berkeley Pit lake, Butte, Montana. Chemical Geology, 2003, 198, 269-288.	3.3	92
11	The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300°C. Geochimica Et Cosmochimica Acta, 1989, 53, 279-290.	3.9	91
12	Rates of Arsenopyrite Oxidation by Oxygen and Fe(III) at pH 1.8â^'12.6 and 15â^'45 °C. Environmental Science & Technology, 2007, 41, 6460-6464.	10.0	89
13	Experimental investigations of the hydrothermal geochemistry of platinum and palladium: V. Equilibria between platinum metal, Pt(II), and Pt(IV) chloride complexes at 25 to 300°C. Geochimica Et Cosmochimica Acta, 1996, 60, 1683-1694.	3.9	83
14	Biogeochemical Controls on Diel Cycling of Stable Isotopes of Dissolved O2and Dissolved Inorganic Carbon in the Big Hole River, Montana. Environmental Science & Technology, 2005, 39, 7134-7140.	10.0	82
15	Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Applied Geochemistry, 2005, 20, 2116-2137.	3.0	81
16	Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA. Chemical Geology, 2010, 269, 100-112.	3.3	74
17	Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Applied Geochemistry, 2013, 31, 228-238.	3.0	66
18	Mercury concentrations of fish, river water, and sediment in the RÃo Ramis-Lake Titicaca watershed, Peru. Science of the Total Environment, 2006, 368, 637-648.	8.0	59

#	Article	IF	CITATIONS
19	Characterizing groundwater–lake interactions and its impact on lake water quality. Journal of Hydrology, 2013, 492, 69-78.	5.4	57
20	Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA. Applied Geochemistry, 2007, 22, 1329-1343.	3.0	54
21	Long Term Changes in the Limnology and Geochemistry of the Berkeley Pit Lake, Butte, Montana. Mine Water and the Environment, 2006, 25, 76-85.	2.0	45
22	Fate and transport of metals in H2S-rich waters at a treatment wetland. Geochemical Transactions, 2001, 2, 1.	0.7	44
23	Diel behavior of stable isotopes of dissolved oxygen and dissolved inorganic carbon in rivers over a range of trophic conditions, and in a mesocosm experiment. Chemical Geology, 2010, 269, 22-32.	3.3	44
24	Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. Journal of Volcanology and Geothermal Research, 2008, 178, 213-223.	2.1	39
25	Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system. Science of the Total Environment, 2007, 384, 433-451.	8.0	36
26	The stability of aqueous silver bromide and iodide complexes at 25–300°C: Experiments, theory and geologic applications. Chemical Geology, 1997, 137, 155-173.	3.3	32
27	The behavior of rare earth elements in naturally and anthropogenically acidified waters. Journal of Alloys and Compounds, 2006, 418, 161-165.	5.5	32
28	The influence of hydrous Mn–Zn oxides on diel cycling of Zn in an alkaline stream draining abandoned mine lands. Applied Geochemistry, 2006, 21, 476-491.	3.0	31
29	Diel cycling of trace elements in streams draining mineralized areas—A review. Applied Geochemistry, 2015, 57, 35-44.	3.0	31
30	Role of Hydrous Iron Oxide Formation in Attenuation and Diel Cycling of Dissolved Trace Metals in a Stream Affected by Acid Rock Drainage. Water, Air, and Soil Pollution, 2007, 181, 247-263.	2.4	28
31	Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers. Chemical Geology, 2008, 252, 202-213.	3.3	27
32	The aqueous geochemistry of REE Chemical Geology, 2000, 166, 103-124.	3.3	26
33	Influence of diurnal cycles on metal concentrations and loads in streams draining abandoned mine lands: an example from High Ore Creek, Montana. Environmental Geology, 2007, 53, 611-622.	1.2	24
34	A Survey of the Geochemistry of Flooded Mine Shaft Water in Butte, Montana. Mine Water and the Environment, 2006, 25, 100-107.	2.0	22
35	Investigating the potential for microbially induced carbonate precipitation to treat mine waste. Journal of Hazardous Materials, 2022, 424, 127490.	12.4	22
36	Diel mercury-concentration variations in streams affected by mining and geothermal discharge. Science of the Total Environment, 2007, 373, 344-355.	8.0	21

#	Article	IF	CITATIONS
37	Stable isotopes track biogeochemical processes under seasonal ice cover in a shallow, productive lake. Biogeochemistry, 2014, 120, 359-379.	3.5	19
38	Behavior of stable isotopes of dissolved oxygen, dissolved inorganic carbon and nitrate in groundwater at a former wood treatment facility containing hydrocarbon contamination. Applied Geochemistry, 2012, 27, 1101-1110.	3.0	18
39	An Overview of the Mining History and Geology of Butte, Montana. Mine Water and the Environment, 2006, 25, 70-75.	2.0	17
40	Tracing dissolved O2 and dissolved inorganic carbon stable isotope dynamics in the Nyack aquifer: Middle Fork Flathead River, Montana, USA. Geochimica Et Cosmochimica Acta, 2011, 75, 5971-5986.	3.9	17
41	Geochemistry, water balance, and stable isotopes of a "clean―pit lake at an abandoned tungsten mine, Montana, USA. Applied Geochemistry, 2013, 36, 57-69.	3.0	17
42	Geochemistry of Flooded Underground Mine Workings Influenced by Bacterial Sulfate Reduction. Aquatic Geochemistry, 2007, 13, 211-235.	1.3	16
43	Influence of Copper Recovery on the Water Quality of the Acidic Berkeley Pit Lake, Montana, U.S.A Environmental Science & Technology, 2015, 49, 4081-4088.	10.0	16
44	Geochemistry and Isotopic Composition of H2S-rich Water in Flooded Underground Mine Workings, Butte, Montana, USA. Mine Water and the Environment, 2003, 22, 141-148.	2.0	13
45	A 24 h investigation of the hydrogeochemistry of baseflow and stormwater in an urban area impacted by mining: Butte, Montana. Hydrological Processes, 2005, 19, 2737-2753.	2.6	13
46	Dissolved oxygen and dissolved inorganic carbon stable isotope composition and concentration fluxes across several shallow floodplain aquifers and in a diffusion experiment. Biogeochemistry, 2014, 117, 539-552.	3.5	12
47	Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2064-2081.	3.0	12
48	A comparison of filtered vs. unfiltered metal concentrations in treatment wetlands. Mine Water and the Environment, 2000, 19, 111-123.	2.0	11
49	Summary of Deepwater Sediment/Pore Water Characterization for the Metal-laden Berkeley Pit Lake in Butte, Montana. Mine Water and the Environment, 2006, 25, 86-92.	2.0	9
50	Estimating groundwater inflow and leakage outflow for an intermontane lake with a structurally complex geology: Georgetown Lake in Montana, USA. Hydrogeology Journal, 2017, 25, 135-149.	2.1	9
51	Improvements to the Water Quality of the Acidic Berkeley Pit Lake due to Copper Recovery and Sludge Disposal. Mine Water and the Environment, 2020, 39, 427-439.	2.0	9
52	Geochemistry of Perched Water in an Abandoned Underground Mine, Butte, Montana. Mine Water and the Environment, 2006, 25, 114-123.	2.0	8
53	Diel Cycling of Zinc in a Stream Impacted by Acid Rock Drainage: Initial Results from a New in situ Zn Analyzer. Environmental Monitoring and Assessment, 2007, 133, 161-167.	2.7	8
54	Paragenesis of cobalt and nickel in the Black Butte shale-hosted copper deposit, Belt Basin, Montana, USA. Mineralium Deposita, 2014, 49, 335-351.	4.1	8

#	Article	IF	CITATIONS
55	An investigation of acidic head-water streams in the Judith Mountains, Montana, USA. Applied Geochemistry, 2015, 62, 48-60.	3.0	8
56	Contaminated Alluvial Ground Water in the Butte Summit Valley. Mine Water and the Environment, 2006, 25, 124-129.	2.0	7
57	Evaluation of the Potential for Beneficial Use of Contaminated Water in a Flooded Mine Shaft in Butte, Montana. Mine Water and the Environment, 2009, 28, 264.	2.0	6
58	Results and Lessons Learned from a Continuous Injection Tracer Test in a Small Mountain Stream Receiving Acid Mine Drainage. Mine Water and the Environment, 2009, 28, 182-193.	2.0	5
59	Stability of aqueous Fe(III) chloride complexes and the solubility of hematite between 150 and 300â€ ⁻ °C. Geochimica Et Cosmochimica Acta, 2022, 330, 148-164.	3.9	4
60	Geochemistry of natural acid rock drainage in the Judith Mountains, Montana, part 2: Seasonal and spatial trends in Chicago Gulch. Applied Geochemistry, 2021, 129, 104968.	3.0	3
61	Aeromagnetic and spectral expressions of rare earth element deposits in Gallinas Mountains area, Central New Mexico, USA. Interpretation, 2018, 6, T937-T949.	1.1	1
62	Mineralogy and sulfur isotope geochemistry of polymetallic, porphyry-epithermal mineralization peripheral to the Golden Sunlight gold mine, Montana. Ore Geology Reviews, 2020, 126, 103797.	2.7	1