Yong-gang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283438/publications.pdf

Version: 2024-02-01

108	3,065	35	51
papers	citations	h-index	g-index
110	110	110	1530 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Unknown input observer-based fault diagnosis of speed sensors in dual clutch transmission. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237, 1710-1720.	1.9	1
2	Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Discrete Global Trajectory. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 8513-8527.	8.0	32
3	Design, Control, and Validation of Two-Speed Clutchless Automatic Transmission for Electric Vehicle. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1299-1310.	5.8	6
4	Machine Learning-Based Vehicle Model Construction and Validationâ€"Toward Optimal Control Strategy Development for Plug-In Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 1590-1603.	7.8	8
5	Multi-fault Detection and Isolation for Lithium-lon Battery Systems. IEEE Transactions on Power Electronics, 2022, 37, 971-989.	7.9	59
6	A Novel Learning-Based Model Predictive Control Strategy for Plug-In Hybrid Electric Vehicle. IEEE Transactions on Transportation Electrification, 2022, 8, 23-35.	7.8	17
7	A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 2022, 243, 122727.	8.8	50
8	Integrated Velocity Prediction Method and Application in Vehicle-Environment Cooperative Control Based on Internet of Vehicles. IEEE Transactions on Vehicular Technology, 2022, 71, 2639-2654.	6.3	6
9	An Optimal Control Strategy for Plug-In Hybrid Electric Vehicles Based on Enhanced Model Predictive Control With Efficient Numerical Method. IEEE Transactions on Transportation Electrification, 2022, 8, 2516-2530.	7.8	4
10	A novel data-driven controller for plug-in hybrid electric vehicles with improved adaptabilities to driving environment. Journal of Cleaner Production, 2022, 334, 130250.	9.3	9
11	State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network. Journal of Power Sources, 2022, 521, 230892.	7.8	85
12	Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope. Energy, 2022, 244, 123236.	8.8	19
13	Pseudo-spectral optimization and data-driven control of vehicle start process with dual-clutch transmission. Mechanism and Machine Theory, 2022, 172, 104814.	4.5	2
14	Protocol for state-of-health prediction of lithium-ion batteries based on machine learning. STAR Protocols, 2022, 3, 101272.	1.2	4
15	Reinforcement-Learning-Based Decision and Control for Autonomous Vehicle at Two-Way Single-Lane Unsignalized Intersection. Electronics (Switzerland), 2022, 11, 1203.	3.1	7
16	Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections. Energy, 2022, 251, 123924.	8.8	26
17	Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction. , 2022, 1, 100008.		61
18	Coordinated control strategy for braking and shifting for electric vehicle with two-speed automatic transmission. ETransportation, 2022, 13, 100188.	14.8	11

#	Article	IF	Citations
19	Research on intelligent launching control of dual clutch transmissions based on adaptive neural fuzzy inference system. Journal of Mechanical Science and Technology, 2022, 36, 3227-3237.	1.5	2
20	Virtual Fluid-Flow-Model-Based Lane-Keeping Integrated With Collision Avoidance Control System Design for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 6232-6241.	8.0	15
21	<scp>State /scp>of charge estimation framework for lithiumâ€ion batteries based on square root cubature Kalman filter under wide operation temperature range. International Journal of Energy Research, 2021, 45, 5586-5601.</scp>	4.5	26
22	Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution. Journal of Power Sources, 2021, 482, 228964.	7.8	59
23	Stage of Charge Estimation of Lithium-Ion Battery Packs Based on Improved Cubature Kalman Filter With Long Short-Term Memory Model. IEEE Transactions on Transportation Electrification, 2021, 7, 1271-1284.	7.8	54
24	A novel optimal power management strategy for plug-in hybrid electric vehicle with improved adaptability to traffic conditions. Journal of Power Sources, 2021, 489, 229512.	7.8	21
25	State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning. Journal of Energy Storage, 2021, 37, 102494.	8.1	49
26	Data-driven based eco-driving control for plug-in hybrid electric vehicles. Journal of Power Sources, 2021, 498, 229916.	7.8	36
27	A real-time optimization energy management of range extended electric vehicles for battery lifetime and energy consumption. Journal of Power Sources, 2021, 498, 229939.	7.8	42
28	Cooperative optimization of velocity planning and energy management for connected plug-in hybrid electric vehicles. Applied Mathematical Modelling, 2021, 95, 715-733.	4.2	28
29	Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving. Energy, 2021, 228, 120568.	8.8	11
30	Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy, 2021, 228, 120630.	8.8	54
31	An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles. Energy, 2021, 228, 120631.	8.8	17
32	Energy Management Strategy of a Hybrid Power System Based on V2X Vehicle Speed Prediction. Sensors, 2021, 21, 5370.	3.8	10
33	Real-time estimation of road slope based on multiple models and multiple data fusion. Measurement: Journal of the International Measurement Confederation, 2021, 181, 109609.	5.0	13
34	Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles. Mechanical Systems and Signal Processing, 2021, 158, 107765.	8.0	33
35	A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 2021, 151, 111607.	16.4	39
36	A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs With Long Short-Term Memory Network and Transfer Learning. IEEE Transactions on Transportation Electrification, 2021, 7, 2238-2248.	7.8	76

#	Article	IF	CITATIONS
37	State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives. IScience, 2021, 24, 103265.	4.1	78
38	Optimal Energy Management for a Dual-motor All-wheel Drive Electric Vehicle Considering Battery Temperature., 2021,,.		0
39	An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information. Energy, 2020, 190, 116409.	8.8	80
40	A real-time blended energy management strategy of plug-in hybrid electric vehicles considering driving conditions. Journal of Cleaner Production, 2020, 252, 119735.	9.3	40
41	Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation. Journal of Cleaner Production, 2020, 251, 119627.	9.3	22
42	A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework. Journal of Power Sources, 2020, 477, 228650.	7.8	8
43	Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning. Energy, 2020, 211, 118931.	8.8	68
44	A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks. Energy, 2020, 208, 118366.	8.8	50
45	Cooperative charging management for electric vehicles via mobile edge computation. Journal of Power Sources, 2020, 474, 228533.	7.8	6
46	Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–lon Batteries in Their Entire Lifespan. Energies, 2020, 13, 1410.	3.1	7
47	A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization. Energy, 2020, 204, 117957.	8.8	65
48	Online energy management strategy of fuel cell hybrid electric vehicles based on rule learning. Journal of Cleaner Production, 2020, 260, 121017.	9.3	38
49	An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation. Energy, 2020, 207, 118262.	8.8	56
50	Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization. Energy, 2020, 207, 118212.	8.8	57
51	Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles. Journal of Power Sources, 2020, 471, 228478.	7.8	71
52	State of Health Estimation for Lithium-Ion Batteries Based on Healthy Features and Long Short-Term Memory. IEEE Access, 2020, 8, 28533-28547.	4.2	89
53	Research on Equivalent Factor Boundary of Equivalent Consumption Minimization Strategy for PHEVs. IEEE Transactions on Vehicular Technology, 2020, 69, 6011-6024.	6.3	42
54	An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation. Journal of Power Sources, 2020, 462, 228132.	7.8	79

#	Article	IF	Citations
55	Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Capacity Estimation and Box-Cox Transformation. IEEE Transactions on Vehicular Technology, 2020, 69, 14765-14779.	6.3	26
56	Robust Cascaded Nonlinear Generalized Predictive Control with Sliding Mode Disturbance Observer for Permanent Magnet Synchronous Hub Motor., 2020,,.		0
57	Optimal Eco-driving Control for Plug-in Hybrid Electric Vehicles Based on Neural Network. , 2020, , .		1
58	Research on Dynamic Coordination Active Mode Switching Control Strategy for Hybrid Electric Vehicle Based on Traffic Information. IEEE Access, 2019, 7, 104967-104981.	4.2	5
59	Driving Intention Identification Based on Long Short-Term Memory and A Case Study in Shifting Strategy Optimization. IEEE Access, 2019, 7, 128593-128605.	4.2	22
60	Research on Classification and Recognition of Driving Styles Based on Feature Engineering. IEEE Access, 2019, 7, 89245-89255.	4.2	26
61	Active Control and Validation of the Electric Vehicle Powertrain System Using the Vehicle Cluster Environment. Energies, 2019, 12, 3642.	3.1	3
62	Trip-Oriented Model Predictive Energy Management Strategy for Plug-in Hybrid Electric Vehicles. IEEE Access, 2019, 7, 113771-113785.	4.2	13
63	State of Health Estimation for Lithium-ion Batteries Based on Fusion of Autoregressive Moving Average Model and Elman Neural Network. IEEE Access, 2019, 7, 102662-102678.	4.2	78
64	An Adaptive Equivalent Consumption Minimization Strategy for Plug-In Hybrid Electric Vehicles Based on Energy Balance Principle. IEEE Access, 2019, 7, 67589-67601.	4.2	19
65	A Vehicle-Environment Cooperative Control Based Velocity Profile Prediction Method and Case Study in Energy Management of Plug-in Hybrid Electric Vehicles. IEEE Access, 2019, 7, 75965-75975.	4.2	8
66	Optimal charging strategy design for lithiumâ€ion batteries considering minimization of temperature rise and energy loss. International Journal of Energy Research, 2019, 43, 4344-4358.	4.5	31
67	Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles. Journal of Power Sources, 2019, 429, 55-66.	7.8	153
68	A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine. IEEE Access, 2019, 7, 26543-26550.	4.2	120
69	An Improved State of Charge Estimation Method for Lithium-Ion Battery Used in a Wide Ambient Temperature Range. , 2019, , .		1
70	Driving Intention Identification Based on Long Short-Term Memory Neural Network. , 2019, , .		4
71	Optimal Energy Management and Sizing of a Dual Motor-Driven Electric Powertrain. IEEE Transactions on Power Electronics, 2019, 34, 7489-7501.	7.9	76
72	Bulk temperature prediction of a two-speed automatic transmission for electric vehicles using thermal network method and experimental validation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 2585-2598.	1.9	10

#	Article	IF	CITATIONS
73	Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach. Energy, 2019, 166, 929-938.	8.8	92
74	An Exponentially Varying Speed Prediction Method Based on SVM Recognition. DEStech Transactions on Environment Energy and Earth Science, 2019, , .	0.0	1
75	Research on Driving Style Classification for Shift Schedule of Dual Clutch Transmissions. , 2019, , .		1
76	Real-Time Optimal Control of the Gearshift Schedule for Dual Clutch Transmissions. , 2019, , .		0
77	Rule-corrected energy management strategy for hybrid electric vehicles based on operation-mode prediction. Journal of Cleaner Production, 2018, 188, 796-806.	9.3	44
78	Global optimization of emission and energy consumption for plug-in hybrid electric vehicle equipped with electric-mechanical continuously variable transmission. International Journal of Advanced Manufacturing Technology, 2018, 94, 3389-3398.	3.0	4
79	Self-adaptive control of shearer based on cutting resistance recognition. International Journal of Advanced Manufacturing Technology, 2018, 94, 3553-3561.	3.0	5
80	Simulation and Analysis of Energy Consumption for Plug-in Hybrid Electric Vehicles Based on Driving Cycles. IFAC-PapersOnLine, 2018, 51, 394-399.	0.9	5
81	A Control Strategy for Driving Mode Switches of Plug-in Hybrid Electric Vehicles. Sustainability, 2018, 10, 4237.	3.2	9
82	Energy Management for a Power-Split Plug-In Hybrid Electric Vehicle Based on Reinforcement Learning. Applied Sciences (Switzerland), 2018, 8, 2494.	2.5	44
83	Active Control on Dynamic Loads of the Drum Shearer Cutting Transmission System Based on Active Disturbance Rejection Torque Compensation. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2018, 54, 31.	0.5	3
84	Dynamic energy management for a novel hybrid electric system based on driving pattern recognition. Applied Mathematical Modelling, 2017, 45, 940-954.	4.2	35
85	Analysis and coordinated control of mode transition and shifting for a full hybrid electric vehicle based on dual clutch transmissions. Mechanism and Machine Theory, 2017, 114, 125-140.	4.5	40
86	Modeling and control of engine starting for a full hybrid electric vehicle based on system dynamic characteristics. International Journal of Automotive Technology, 2017, 18, 911-922.	1.4	19
87	Controls development for motor-assisted engine starting in a full hybrid electric vehicle with an integrated starter generator. International Journal of Vehicle Design, 2017, 74, 346.	0.3	0
88	A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition. Energies, 2017, 10, 54.	3.1	44
89	Optimal Energy Management Strategy for a Plug-in Hybrid Electric Vehicle Based on Road Grade Information. Energies, 2017, 10, 412.	3.1	22
90	Research on dynamic load characteristics and active control strategy of electro-mechanical coupling powertrain of drum shearer cutting unit under impact load. Journal of Vibroengineering, 2017, 19, 1882-1900.	1.0	6

#	Article	IF	Citations
91	Parameter Optimization of Hybrid Electric Vehicle Based on Multi-cycle Optimization Algorithm. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2017, 53, 61.	0.5	5
92	Coordination control during mode transition for a single-shaft parallel hybrid electric vehicle. International Journal of Electric and Hybrid Vehicles, 2016, 8, 255.	0.3	0
93	Analysis of the efficiency of the power coupling mechanism for tracked vehicle transmission based on the graph theory., 2016,, 415-422.		0
94	Control strategy for all the mode-switches of hybrid electric vehicle. Advances in Mechanical Engineering, 2016, 8, 168781401668123.	1.6	17
95	Modeling and ratio control of an electromechanical continuously variable transmission. International Journal of Automotive Technology, 2016, 17, 225-235.	1.4	10
96	Research on the time-varying characteristics and alications of curve-face gear pair., 2016,, 501-508.		2
97	Efficiency modeling and experiment of the 2-speed AMT for pure electric vehicle. , 2016, , 397-404.		0
98	Shift control strategy and experimental validation for dry dual clutch transmissions. Mechanism and Machine Theory, 2014, 75, 41-53.	4.5	70
99	Pressure Coordinated Control System for HEV Regenerative Braking. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2014, 50, 127.	0.5	1
100	Finite Element Analysis for Mechanical Characteristics of Resistance Spot Welding Process with Three Sheets Assemblies. Applied Mechanics and Materials, 2012, 233, 369-373.	0.2	1
101	Finite Element Analysis for Transient Thermal Characteristics of Resistance Spot Welding Process with Three Sheets Assemblies. Procedia Engineering, 2011, 16, 622-631.	1.2	17
102	Clutch torque formulation and calibration for dry dual clutch transmissions. Mechanism and Machine Theory, 2011, 46, 218-227.	4.5	30
103	Control and Simulation of Launch with Two Clutches for Dual Clutch Transmissions. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2010, 46, 121.	0.5	11
104	A Systematic Model for Dynamics and Control of Dual Clutch Transmissions. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	70
105	Shift schedule optimization for dual clutch transmissions. , 2009, , .		4
106	Powertrain Control Logic Test for Plug-in Hybrid Electric Vehicle. Applied Mechanics and Materials, 0, 86, 579-583.	0.2	0
107	Intelligent Correction of Shift Schedule for Dual Clutch Transmissions Based on Different Driving Conditions. Applied Mechanics and Materials, 0, 121-126, 3982-3987.	0.2	4
108	Active torque control for gear dynamic load suppression in a drum shearer cutting transmission system under impact loads. JVC/Journal of Vibration and Control, 0, , 107754631774312.	2.6	3