
Paolo Desiati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 2013, 342, 1242856.	12.6	1,048
2	Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 2014, 113, 101101.	7.8	873
3	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	12.6	654
4	Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361, 147-151.	12.6	601
5	First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 2013, 111, 021103.	7.8	578
6	The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 2017, 12, P03012-P03012.	1.2	390
7	First year performance of the IceCube neutrino telescope. Astroparticle Physics, 2006, 26, 155-173.	4.3	379
8	Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astroparticle Physics, 2004, 20, 507-532.	4.3	341
9	A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. Astrophysical Journal, 2015, 809, 98.	4.5	337
10	OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. Astrophysical Journal, 2016, 833, 3.	4.5	336
11	The IceCube data acquisition system: Signal capture, digitization, and timestamping. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 294-316.	1.6	312
12	Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Physical Review Letters, 2015, 115, 081102.	7.8	247
13	Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector. Physical Review Letters, 2013, 110, 131302.	7.8	235
14	The design and performance of IceCube DeepCore. Astroparticle Physics, 2012, 35, 615-624.	4.3	222
15	Time-Integrated Neutrino Source Searches with 10ÂYears of IceCube Data. Physical Review Letters, 2020, 124, 051103.	7.8	221
16	Calibration and characterization of the IceCube photomultiplier tube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 618, 139-152.	1.6	211
17	Atmospheric and astrophysical neutrinos above 1ÂTeV interacting in IceCube. Physical Review D, 2015, 91,	4.7	209
18	IceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 060501.	3.6	204

#	Article	IF	CITATIONS
19	All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophysical Journal, 2017, 835, 151.	4.5	198
20	THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX. Astrophysical Journal, 2017, 835, 45.	4.5	186
21	Muon track reconstruction and data selection techniques in AMANDA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 524, 169-194.	1.6	171
22	Energy reconstruction methods in the IceCube neutrino telescope. Journal of Instrumentation, 2014, 9, P03009-P03009.	1.2	171
23	IceTop: The surface component of IceCube. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 700, 188-220.	1.6	166
24	Measurement of the atmospheric neutrino energy spectrum from 100ÂGeV to 400ÂTeV with IceCube. Physical Review D, 2011, 83, .	4.7	156
25	Flavor Ratio of Astrophysical Neutrinos above 35ÂTeV in IceCube. Physical Review Letters, 2015, 114, 171102.	7.8	156
26	Optical properties of deep glacial ice at the South Pole. Journal of Geophysical Research, 2006, 111, .	3.3	149
27	SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA. Astrophysical Journal, 2014, 796, 109.	4.5	149
28	Observation of high-energy neutrinos using ÄŒerenkov detectors embedded deep in Antarctic ice. Nature, 2001, 410, 441-443.	27.8	148
29	IceCube high-energy starting event sample: Description and flux characterization with 7.5Âyears of data. Physical Review D, 2021, 104, .	4.7	142
30	Searches for Sterile Neutrinos with the IceCube Detector. Physical Review Letters, 2016, 117, 071801.	7.8	140
31	Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 2020, 125, 121104.	7.8	137
32	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
33	Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector. Physical Review Letters, 2009, 102, 201302.	7.8	132
34	Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Physical Review D, 2018, 98, .	4.7	131
35	TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR. Astrophysical Journal, 2011, 732, 18.	4.5	126
36	SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE. Astrophysical Journal Letters, 2015, 805, L5.	8.3	124

#	Article	IF	CITATIONS
37	Measurement of South Pole ice transparency with the IceCube LED calibration system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 73-89.	1.6	122
38	lceCube sensitivity for low-energy neutrinos from nearby supernovae. Astronomy and Astrophysics, 2011, 535, A109.	5.1	121
39	MEASUREMENT OF THE ANISOTROPY OF COSMIC-RAY ARRIVAL DIRECTIONS WITH ICECUBE. Astrophysical Journal Letters, 2010, 718, L194-L198.	8.3	119
40	The IceCube realtime alert system. Astroparticle Physics, 2017, 92, 30-41.	4.3	116
41	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophysical Journal, 2017, 843, 112.	4.5	116
42	OBSERVATION OF ANISOTROPY IN THE GALACTIC COSMIC-RAY ARRIVAL DIRECTIONS AT 400 TeV WITH ICECUBE. Astrophysical Journal, 2012, 746, 33.	4.5	115
43	Measurement of the cosmic ray energy spectrum with IceTop-73. Physical Review D, 2013, 88, .	4.7	114
44	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10ÂPeV with IceCube. Physical Review Letters, 2016, 117, 241101.	7.8	111
45	Search for annihilating dark matter in the Sun with 3Âyears of IceCube data. European Physical Journal C, 2017, 77, 1.	3.9	111
46	AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY. Astrophysical Journal, 2016, 824, 115.	4.5	109
47	OBSERVATION OF ANISOTROPY IN THE ARRIVAL DIRECTIONS OF GALACTIC COSMIC RAYS AT MULTIPLE ANGULAR SCALES WITH IceCube. Astrophysical Journal, 2011, 740, 16.	4.5	103
48	Global Anisotropies in TeV Cosmic Rays Related to the Sun's Local Galactic Environment from IBEX. Science, 2014, 343, 988-990.	12.6	98
49	Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. Astrophysical Journal, 2017, 849, 67.	4.5	95
50	lceCube sensitivity for low-energy neutrinos from nearby supernovae (<i>Corrigendum</i>). Astronomy and Astrophysics, 2014, 563, C1.	5.1	94
51	Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II. Physical Review D, 2007, 76, .	4.7	92
52	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
53	Measurement of Atmospheric Neutrino Oscillations at 6–56ÂGeV with IceCube DeepCore. Physical Review Letters, 2018, 120, 071801.	7.8	88
54	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector. Physical Review D, 2011, 84, .	4.7	87

#	Article	IF	CITATIONS
55	Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 2015, 91, .	4.7	86
56	Detection of a particle shower at the Glashow resonance with IceCube. Nature, 2021, 591, 220-224.	27.8	86
57	Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector. Physical Review Letters, 2011, 106, 141101.	7.8	85
58	OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY. Astrophysical Journal, 2013, 765, 55.	4.5	85
59	SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. Astrophysical Journal, 2010, 710, 346-359.	4.5	81
60	SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA. Astrophysical Journal, 2013, 779, 132.	4.5	81
61	Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope. Physical Review D, 2011, 84, .	4.7	79
62	Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array. Physical Review D, 2002, 66, .	4.7	76
63	Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Physical Review D, 2010, 82, .	4.7	76
64	Cosmic ray spectrum and composition from PeV to EeV using 3Âyears of data from IceTop and IceCube. Physical Review D, 2019, 100, .	4.7	76
65	Search for sterile neutrino mixing using three years of IceCube DeepCore data. Physical Review D, 2017, 95, .	4.7	75
66	Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. European Physical Journal C, 2019, 79, 1.	3.9	75
67	Search for Ultra–Highâ€Energy Neutrinos with AMANDAâ€II. Astrophysical Journal, 2008, 675, 1014-1024.	4.5	74
68	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration. Physical Review D, 2014, 89, .	4.7	74
69	ANISOTROPY IN COSMIC-RAY ARRIVAL DIRECTIONS IN THE SOUTHERN HEMISPHERE BASED ON SIX YEARS OF DATA FROM THE ICECUBE DETECTOR. Astrophysical Journal, 2016, 826, 220.	4.5	72
70	Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II. Physical Review D, 2009, 79, .	4.7	71
71	MAGNETIC RECONNECTION AS THE CAUSE OF COSMIC RAY EXCESS FROM THE HELIOSPHERIC TAIL. Astrophysical Journal, 2010, 722, 188-196.	4.5	70
72	Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data. Physical Review D, 2011, 83, .	4.7	68

#	Article	IF	CITATIONS
73	Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophysical Journal, 2022, 928, 50.	4.5	67
74	Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors. Physical Review D, 2012, 85, .	4.7	66
75	Search for Extraterrestrial Point Sources of Neutrinos with AMANDA-II. Physical Review Letters, 2004, 92, 071102.	7.8	65
76	Limits on Diffuse Fluxes of High Energy Extraterrestrial Neutrinos with the AMANDA-B10 Detector. Physical Review Letters, 2003, 90, 251101.	7.8	64
77	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Flux in IceCube. Physical Review Letters, 2013, 110, 151105.	7.8	64
78	Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophysical Journal Letters, 2018, 868, L20.	8.3	64
79	Search for neutrino-induced cascades with AMANDA. Astroparticle Physics, 2004, 22, 127-138.	4.3	62
80	Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. European Physical Journal C, 2017, 77, 1.	3.9	62
81	Search for neutrinos from decaying dark matter with IceCube. European Physical Journal C, 2018, 78, 831.	3.9	62
82	Flux limits on ultra high energy neutrinos with AMANDA-B10. Astroparticle Physics, 2005, 22, 339-353.	4.3	60
83	Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. Astrophysical Journal, 2019, 880, 103.	4.5	60
84	Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Physical Review D, 2007, 76, .	4.7	57
85	Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux. Physical Review D, 2012, 86, .	4.7	57
86	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Physical Review Letters, 2020, 125, 141801.	7.8	57
87	SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012. Astrophysical Journal, 2015, 807, 46.	4.5	56
88	Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 022-022.	5.4	56
89	Light tracking through ice and water—Scattering and absorption in heterogeneous media with Photonics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 619-631.	1.6	55
90	Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Physical Review D, 2019, 99, .	4.7	55

Paolo Desiati

#	Article	IF	CITATIONS
91	IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters. Physical Review D, 2013, 88, .	4.7	53
92	ANISOTROPY OF TeV COSMIC RAYS AND OUTER HELIOSPHERIC BOUNDARIES. Astrophysical Journal, 2013, 762, 44.	4.5	53
93	Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophysical Journal, 2019, 886, 12.	4.5	53
94	Measurement of atmospheric tau neutrino appearance with IceCube DeepCore. Physical Review D, 2019, 99, .	4.7	53
95	Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Physical Review D, 2007, 75, .	4.7	52
96	Search for dark matter annihilation in the Galactic Center with IceCube-79. European Physical Journal C, 2015, 75, 1.	3.9	52
97	Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector. Astroparticle Physics, 2006, 24, 459-466.	4.3	51
98	Characterization of the atmospheric muon flux in IceCube. Astroparticle Physics, 2016, 78, 1-27.	4.3	51
99	Measurement of Atmospheric Neutrino Oscillations with IceCube. Physical Review Letters, 2013, 111, 081801.	7.8	49
100	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
101	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Spectrum with IceCube. Physical Review D, 2015, 91, .	4.7	48
102	Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory. Physical Review D, 2013, 88, .	4.7	47
103	Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector. Physical Review D, 2002, 66, .	4.7	46
104	PINGU: a vision for neutrino and particle physics at the South Pole. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 054006.	3.6	45
105	Search for point sources of high energy neutrinos with final data from AMANDA-II. Physical Review D, 2009, 79, .	4.7	44
106	Search for astrophysical tau neutrinos in three years of IceCube data. Physical Review D, 2016, 93, .	4.7	44
107	The Search for Muon Neutrinos from Northern Hemisphere Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2008, 674, 357-370.	4.5	43
108	FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR. Astrophysical Journal, 2009, 701, L47-L51.	4.5	43

#	Article	IF	CITATIONS
109	Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. Astronomy and Astrophysics, 2012, 539, A60.	5.1	40
110	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
111	Search for non-relativistic magnetic monopoles with IceCube. European Physical Journal C, 2014, 74, 1.	3.9	39
112	THE DETECTION OF A SN IIN IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS. Astrophysical Journal, 2015, 811, 52.	4.5	39
113	Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000–2002. Physical Review D, 2005, 71, .	4.7	38
114	Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube. European Physical Journal C, 2015, 75, 116.	3.9	38
115	TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. Astrophysical Journal, 2012, 744, 1.	4.5	37
116	All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore. European Physical Journal C, 2016, 76, 1.	3.9	37
117	Search for neutrino-induced cascades with the AMANDA detector. Physical Review D, 2003, 67, .	4.7	36
118	Search for Point Sources of Highâ€Energy Neutrinos with AMANDA. Astrophysical Journal, 2003, 583, 1040-1057.	4.5	36
119	Extending the Search for Neutrino Point Sources with IceCube above the Horizon. Physical Review Letters, 2009, 103, 221102.	7.8	36
120	An improved method for measuring muon energy using the truncated mean of dE/dx. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 703, 190-198.	1.6	36
121	First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector. Physical Review D, 2011, 84, .	4.7	34
122	Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube. Astroparticle Physics, 2013, 42, 15-32.	4.3	34
123	Observation of the cosmic-ray shadow of the Moon with IceCube. Physical Review D, 2014, 89, .	4.7	34
124	Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data. Astroparticle Physics, 2015, 66, 39-52.	4.3	34
125	Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. Physical Review D, 2020, 102, .	4.7	34
126	Measurement of acoustic attenuation in South Pole ice. Astroparticle Physics, 2011, 34, 382-393.	4.3	33

Paolo Desiati

#	Article	IF	CITATIONS
127	Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astronomy and Astrophysics, 2017, 607, A115.	5.1	33
128	Search for Neutrinoâ€induced Cascades from Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2007, 664, 397-410.	4.5	32
129	Solar Energetic Particle Spectrum on 2006 December 13 Determined by IceTop. Astrophysical Journal, 2008, 689, L65-L68.	4.5	32
130	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
131	All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field. Astrophysical Journal, 2019, 871, 96.	4.5	32
132	Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Physical Review D, 2020, 102, .	4.7	31
133	IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog. Astrophysical Journal Letters, 2020, 898, L10.	8.3	30
134	Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory. Physical Review D, 2013, 87, .	4.7	29
135	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29
136	Searches for relativistic magnetic monopoles in IceCube. European Physical Journal C, 2016, 76, 1.	3.9	29
137	A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory. Journal of Instrumentation, 2021, 16, P07041.	1.2	29
138	Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors. Astroparticle Physics, 2004, 21, 565-581.	4.3	28
139	First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory. Physical Review D, 2010, 82, .	4.7	28
140	Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo. European Physical Journal C, 2015, 75, 1.	3.9	28
141	SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE "NAKED-EYE―GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE. Astrophysical Journal, 2009, 701, 1721-1731.	4.5	27
142	LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY. Astrophysical Journal Letters, 2016, 824, L28.	8.3	27
143	Search for relativistic magnetic monopoles withÂtheÂAMANDA-IIÂneutrino telescope. European Physical Journal C, 2010, 69, 361-378.	3.9	26
144	On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes. Astroparticle Physics, 2006, 26, 282-300.	4.3	25

#	Article	IF	CITATIONS
145	Lateral distribution of muons in IceCube cosmic ray events. Physical Review D, 2013, 87, .	4.7	25
146	Improvement in fast particle track reconstruction with robust statistics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 736, 143-149.	1.6	25
147	Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU. Physical Review D, 2020, 101, .	4.7	25
148	ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophysical Journal, 2020, 892, 92.	4.5	25
149	COSMIC-RAY SMALL-SCALE ANISOTROPIES AND LOCAL TURBULENT MAGNETIC FIELDS. Astrophysical Journal, 2016, 830, 19.	4.5	24
150	Measurement of the \$\$u _{mu }\$\$ ν μ energy spectrum with IceCube-79. European Physical Journal C, 2017, 77, 692.	3.9	24
151	Search for neutrino-induced particle showers with IceCube-40. Physical Review D, 2014, 89, .	4.7	23
152	Search for nonstandard neutrino interactions with IceCube DeepCore. Physical Review D, 2018, 97, .	4.7	23
153	Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. Physical Review Letters, 2019, 122, 051102.	7.8	23
154	Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA. Astroparticle Physics, 2006, 26, 129-139.	4.3	22
155	Search for neutrino-induced cascades with five years of AMANDA data. Astroparticle Physics, 2011, 34, 420-430.	4.3	22
156	A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophysical Journal, 2018, 857, 117.	4.5	22
157	Seasonal Variation of Atmospheric Leptons as a Probe of Charm. Physical Review Letters, 2010, 105, 121102.	7.8	21
158	Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. Astrophysical Journal, 2017, 846, 136.	4.5	21
159	IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae. Astrophysical Journal, 2020, 898, 117.	4.5	21
160	Search for relativistic magnetic monopoles with IceCube. Physical Review D, 2013, 87, .	4.7	20
161	THE TRANSPORT OF COSMIC RAYS ACROSS MAGNETIC FIELDLINES. Astrophysical Journal, 2014, 791, 51.	4.5	20
162	First search for dark matter annihilations in the Earth with the IceCube detector. European Physical Journal C, 2017, 77, 1.	3.9	20

#	Article	IF	CITATIONS
163	Astrophysical neutrinos and cosmic rays observed by IceCube. Advances in Space Research, 2018, 62, 2902-2930.	2.6	20
164	A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophysical Journal, 2020, 892, 53.	4.5	20
165	A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube. Astrophysical Journal, 2020, 890, 111.	4.5	20
166	Search for ultrahigh-energy tau neutrinos with IceCube. Physical Review D, 2012, 86, .	4.7	19
167	Status of the IceCube Neutrino Observatory. New Astronomy Reviews, 2004, 48, 519-525.	12.8	18
168	Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 2006, 97, 221101.	7.8	18
169	A NEW MAXIMUM-LIKELIHOOD TECHNIQUE FOR RECONSTRUCTING COSMIC-RAY ANISOTROPY AT ALL ANGULAR SCALES. Astrophysical Journal, 2016, 823, 10.	4.5	18
170	Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory. Astrophysical Journal, 2021, 910, 4.	4.5	18
171	Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector. Physical Review D, 2010, 81, .	4.7	17
172	All-particle cosmic ray energy spectrum measured with 26 IceTop stations. Astroparticle Physics, 2013, 44, 40-58.	4.3	15
173	Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube. Physical Review D, 2021, 104, .	4.7	15
174	Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore. Physical Review D, 2022, 105, .	4.7	15
175	Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 048-048.	5.4	14
176	In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes. Journal of Instrumentation, 2020, 15, P06032-P06032.	1.2	14
177	The IceCube prototype string in Amanda. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556, 169-181.	1.6	13
178	NEUTRINO ANALYSIS OF THE 2010 SEPTEMBER CRAB NEBULA FLARE AND TIME-INTEGRATED CONSTRAINTS ON NEUTRINO EMISSION FROM THE CRAB USING ICECUBE. Astrophysical Journal, 2012, 745, 45.	4.5	13
179	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. Astronomy and Astrophysics, 2019, 626, A117.	5.1	13
180	All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data. Physical Review D, 2021, 104, .	4.7	13

#	Article	IF	CITATIONS
181	Calibration and survey of AMANDA with the SPASE detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 522, 347-359.	1.6	12
182	Background studies for acoustic neutrino detection at the South Pole. Astroparticle Physics, 2012, 35, 312-324.	4.3	12
183	Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory. Astrophysical Journal, 2020, 891, 9.	4.5	12
184	Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data. European Physical Journal C, 2020, 80, 1.	3.9	12
185	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophysical Journal Letters, 2021, 920, L45.	8.3	12
186	Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data. Physical Review Letters, 2022, 128, 051101.	7.8	12
187	SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE. Astrophysical Journal, 2012, 748, 118.	4.5	11
188	Neutrino oscillation studies with IceCube-DeepCore. Nuclear Physics B, 2016, 908, 161-177.	2.5	11
189	A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors. Journal of Instrumentation, 2021, 16, P08034.	1.2	11
190	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. Astrophysical Journal, 2020, 893, 102.	4.5	11
191	Cosmic rays and stochastic magnetic reconnection in the heliotail. Nonlinear Processes in Geophysics, 2012, 19, 351-364.	1.3	11
192	SEARCHES FOR HIGH-ENERGY NEUTRINO EMISSION IN THE GALAXY WITH THE COMBINED ICECUBE-AMANDA DETECTOR. Astrophysical Journal, 2013, 763, 33.	4.5	10
193	BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS. Astrophysical Journal, 2012, 758, 3.	4.5	9
194	The IceProd framework: Distributed data processing for the IceCube neutrino observatory. Journal of Parallel and Distributed Computing, 2015, 75, 198-211.	4.1	9
195	A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017. Astrophysical Journal, 2021, 911, 67.	4.5	9
196	Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophysical Journal, 2021, 906, 63.	4.5	9
197	Constraints on high-energy neutrino emission from SN 2008D. Astronomy and Astrophysics, 2011, 527, A28.	5.1	8
198	Measurements of the time-dependent cosmic-ray Sun shadow with seven years of IceCube data: Comparison with the Solar cycle and magnetic field models. Physical Review D, 2021, 103, .	4.7	8

#	Article	IF	CITATIONS
199	Data acquisition electronics for NESTOR experiment: project and tests. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 423, 146-156.	1.6	7
200	SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR. Astrophysical Journal, 2016, 830, 129.	4.5	7
201	Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector. Astrophysical Journal, 2019, 872, 133.	4.5	7
202	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. Astrophysical Journal, 2022, 926, 59.	4.5	7
203	Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub> <mml:mi>î¼2 </mml:mi> <mml:mi>î¼4 </mml:mi> </mml:msub> Disappearance at IceCube. Physical Review Letters. 2022. 129</mml:math 	7.8	7
204	Status of NESTOR, a deep sea neutrino telescope in the Mediterranean. Nuclear Physics, Section B, Proceedings Supplements, 1998, 66, 247-251.	0.4	6
205	Observation of high energy atmospheric neutrinos with AMANDA. AIP Conference Proceedings, 2000, , .	0.4	6
206	New results from the Antarctic Muon And Neutrino Detector Array. Nuclear Physics, Section B, Proceedings Supplements, 2005, 143, 343-350.	0.4	6
207	Observation of TeV–PeV cosmic ray anisotropy with IceCube, IceTop and AMANDA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 199-202.	1.6	6
208	TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary. Astrophysical Journal, 2017, 842, 54.	4.5	6
209	Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. European Physical Journal C, 2020, 80, 1.	3.9	6
210	First all-flavor search for transient neutrino emission using 3-years of IceCube DeepCore data. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 027.	5.4	6
211	RESULTS FROM AMANDA. Modern Physics Letters A, 2002, 17, 2019-2037.	1.2	5
212	THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE. Astrophysical Journal, 2016, 816, 75.	4.5	5
213	Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	5.4	5
214	Search for GeV neutrino emission during intense gamma-ray solar flares with the IceCube Neutrino Observatory. Physical Review D, 2021, 103, .	4.7	5
215	A Consistent Scenario for the IBEX Ribbon, Anisotropies in TeV Cosmic Rays, and the Local Interstellar Medium. ASTRA Proceedings, 0, 2, 9-16.	0.0	5
216	New results from the AMANDA Neutrino Telescope. Nuclear Physics, Section B, Proceedings Supplements, 2005, 145, 319-322.	0.4	3

#	Article	IF	CITATIONS
217	Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. Astroparticle Physics, 2020, 116, 102392.	4.3	3
218	Design and performance of the first IceAct demonstrator at the South Pole. Journal of Instrumentation, 2020, 15, T02002-T02002.	1.2	3
219	Results from the AMANDA neutrino telescope. Nuclear Physics, Section B, Proceedings Supplements, 2004, 136, 85-92.	0.4	2
220	High energy and prompt neutrino production in the atmosphere. Journal of Physics: Conference Series, 2008, 136, 042019.	0.4	2
221	Anisotropies in TeV Cosmic Rays Related to the IBEX Ribbon. Journal of Physics: Conference Series, 2014, 531, 012010.	0.4	2
222	Results from the AMANDA telescope. Nuclear Physics A, 2003, 721, C545-C548.	1.5	1
223	NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE. International Journal of Modern Physics A, 2005, 20, 6919-6923.	1.5	1
224	IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006). Nuclear Physics, Section B, Proceedings Supplements, 2008, 175-176, 407-408.	0.4	1
225	Measurement of the atmospheric neutrino flux with AMANDA-II and IceCube. Journal of Physics: Conference Series, 2008, 120, 052038.	0.4	1
226	Anisotropies in TeV Cosmic Rays Related to the Local Interstellar Magnetic Field from the IBEX Ribbon. Journal of Physics: Conference Series, 2015, 577, 012023.	0.4	1
227	NEUTRINO ASTROPHYSICS AND GALACTIC COSMIC RAY ANISOTROPY IN IceCube. , 2011, , .		1
228	Combined Analysis of Cosmic-Ray Anisotropy with IceCube and HAWC. , 2017, , .		1
229	TeV Cosmic Ray Anisotropy and the Heliospheric Magnetic Field. ASTRA Proceedings, 0, 1, 65-71.	0.0	1
230	Full-Sky Analysis of Cosmic-Ray Anisotropy with IceCube and HAWC. , 2016, , .		1
231	Cosmic-Ray Anisotropy with Seven Years of Data from IceCube and IceTop. , 2017, , .		1
232	Neutrino Astronomy at the South Pole: latest Results from AMANDA-II. AIP Conference Proceedings, 2006, , .	0.4	0
233	Magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail. , 2012, , .		0
234	Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux. EPJ Web of Conferences, 2013, 52, 09003.	0.3	0

#	Article	IF	CITATIONS
235	ICECUBE OBSERVATORY: NEUTRINOS AND THE ORIGIN OF COSMIC RAYS. Acta Polytechnica, 2013, 53, 770-775.	0.6	0
236	Heliospheric Boundary and the TeV Cosmic Ray Anisotropy. Journal of Physics: Conference Series, 2014, 531, 012011.	0.4	0
237	IceCube: A Multipurpose Neutrino Telescope. Journal of the Physical Society of Japan, 2008, 77, 71-75.	1.6	Ο
238	Effects of Turbulent Magnetic Fields in Cosmic Ray Ansiotropy. , 2016, , .		0
239	Anisotropy in Cosmic Ray Arrival Directions Using IceCube and IceTop. , 2016, , .		0