
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ construction of 3D hierarchical MoS2/CoS2@TiO2 nanotube hybrid electrodes with superior capacitive performance toward water treatment. Chemical Engineering Journal, 2022, 429, 132582.	12.7	24
2	Highly flexible and high energy density fiber supercapacitors based upon spiral silk composite membranes encapsulation. Electrochimica Acta, 2022, 404, 139611.	5.2	5
3	A Skinâ€Like Pressure―and Vibrationâ€Sensitive Tactile Sensor Based on Polyacrylamide/Silk Fibroin Elastomer. Advanced Functional Materials, 2022, 32, .	14.9	39
4	Recent advances in various applications of nickel cobalt sulfide-based materials. Journal of Materials Chemistry A, 2022, 10, 8087-8106.	10.3	23
5	Temperature effects on surface textures of CsPbIBr ₂ films for perovskite solar cells. Applied Physics Letters, 2022, 120, 153902.	3.3	0
6	Capacitive heavy metal ion removal of 3D self-supported nitrogen-doped carbon-encapsulated titanium nitride nanorods via the synergy of faradic-reaction and electro-adsorption. Chemical Engineering Journal, 2022, 443, 136542.	12.7	18
7	Efficient and Durable Sodium, Chlorideâ€doped Iron Oxideâ€Hydroxide Nanohybridâ€Promoted Capacitive Deionization of Saline Water via Synergetic Pseudocapacitive Process. Advanced Science, 2022, 9, .	11.2	28
8	Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chemical Engineering Journal, 2021, 409, 127237.	12.7	84
9	Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications. Small Methods, 2021, 5, e2001041.	8.6	101
10	3D hierarchical porous N-doped carbon quantum dots/vanadium nitride hybrid microflowers as a superior electrode material toward high-performance asymmetric capacitive deionization. Environmental Science: Nano, 2021, 8, 2059-2068.	4.3	9
11	Electrochemical Charge Storage Behavior of Various <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mmi:msub><mmi:mrow><mmi:mi>Ni</mmi:mi><mmi:mi>Co</mmi:mi></mmi:mrow><mmi:mrow><mmi:mn>Ni</mmi:mn></mmi:mrow><!--/mmi:mrow--></mmi:msub></mmi:math 	:mn 3.3 th>	៣ l:ឭ n> ៣៣</td
12	Hierarchical Microstructures. Physical Review Applied, 2021, 15, Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 2021, 85, 105973.	16.0	116
13	Carbon-embedded hierarchical and dual-anion C@MoSP heterostructure for efficient capacitive deionization of saline water. Electrochimica Acta, 2021, 387, 138494.	5.2	8
14	Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today, 2021, 40, 101286.	11.9	16
15	High voltage output/energy density flexible asymmetric fiber supercapacitors based on a tree-like topology. Cell Reports Physical Science, 2021, 2, 100649.	5.6	2
16	Free-Standing, Flexible Carbon@MXene Films with Cross-Linked Mesoporous Structures toward Supercapacitors and Pressure Sensors. ACS Applied Materials & Interfaces, 2021, 13, 57576-57587.	8.0	23
17	Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors. Energy Storage Materials, 2020, 24, 541-549.	18.0	160
18	Crafting NiCo2O4@Co9S8 nanotrees on carbon cloth as flexible pressure sensors for effectively monitoring human motion. Applied Nanoscience (Switzerland), 2020, 10, 861-867.	3.1	7

#	Article	IF	CITATIONS
19	MOF-derived Co9S8/C hollow polyhedra grown on 3D graphene aerogel as efficient polysulfide mediator for long-life Li-S batteries. Materials Letters, 2020, 277, 128331.	2.6	19
20	Perovskite Solar Cells: Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for Highâ€Efficiency Perovskite Solar Cells (Adv. Mater. 28/2020). Advanced Materials, 2020, 32, 2070211.	21.0	1
21	A simple route to fiber-shaped heterojunctioned nanocomposites for knittable high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 11589-11597.	10.3	15
22	Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for Highâ€Efficiency Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000999.	21.0	104
23	Making Stretchable Hybrid Supercapacitors by Knitting Nonâ€Stretchable Metal Fibers. Advanced Functional Materials, 2020, 30, 2003153.	14.9	52
24	Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells. Nano Energy, 2020, 71, 104620.	16.0	59
25	Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 6442-6450.	8.0	302
26	Hierarchical and Self-Supported Vanadium Disulfide Microstructures@Graphite Paper: An Advanced Electrode for Efficient and Durable Asymmetric Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7335-7342.	6.7	29
27	Comparative study on electrochemical charge storage behavior of FeCo2S4 electrodes with different dimensional nanostructures. Applied Physics Letters, 2020, 116, .	3.3	14
28	The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.	38.1	139
29	An integrated large-scale and vertically aligned Co(OH)2 nanosheet@graphite paper electrode for high performance capacitive deionization of saline water. Desalination, 2019, 470, 114117.	8.2	24
30	Synthesis of hierarchical lamellar Co ₃ O ₄ –CoMoO ₄ heterostructures for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 26884-26892.	10.3	31
31	Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chemical Engineering Journal, 2019, 356, 985-993.	12.7	128
32	NiS ₂ Nanosheet Films Supported on Ti Foils: Effective Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Journal of the Electrochemical Society, 2018, 165, H45-H51.	2.9	10
33	Highly flexible and scalable photo-rechargeable power unit based on symmetrical nanotube arrays. Nano Energy, 2018, 46, 168-175.	16.0	44
34	Needle‣eaf‣ike Cu ₂ Mo ₆ S ₈ Films for Highly Efficient Visible‣ight Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700302.	2.3	6
35	Rational design of coralloid Co ₉ S ₈ –CuS hierarchical architectures for quantum dot-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11384-11391.	5.5	8
36	Hierarchical Cu ₂ S nanorods with different crystal phases for asymmetrical supercapacitors and visible-light photocatalysis. Dalton Transactions, 2018, 47, 15189-15196.	3.3	22

#	Article	IF	CITATIONS
37	Chemical Decoration of Perovskites by Nickel Oxide Doping for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 36841-36850.	8.0	11
38	Flexible fiber-shaped liquid/quasi-solid-state quantum dot-sensitized solar cells based on different metal sulfide counter electrodes. Applied Physics Letters, 2018, 113, .	3.3	14
39	Shape-dependent photogenerated cathodic protection by hierarchically nanostructured TiO2 films. Applied Surface Science, 2018, 462, 142-148.	6.1	27
40	Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells. Nanoscale, 2017, 9, 3826-3833.	5.6	33
41	Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Composites Science and Technology, 2017, 142, 286-293.	7.8	56
42	Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy and Fuels, 2017, 1, 1217-1231.	4.9	103
43	Sputtered seed-assisted growth of CuS nanosheet arrays as effective counter electrodes for quantum dot-sensitized solar cells. Materials Letters, 2017, 203, 73-76.	2.6	13
44	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	2.8	129
45	Transparent conducting oxide- and Pt-free flexible photo-rechargeable electric energy storage systems. RSC Advances, 2017, 7, 52988-52994.	3.6	23
46	Smart electrochromic supercapacitors based on highly stable transparent conductive graphene/CuS network electrodes. RSC Advances, 2017, 7, 29088-29095.	3.6	35
47	Plasmonic Photocatalysis: Plasmonâ€Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites (Adv. Sci. 6/2016). Advanced Science, 2016, 3, .	11.2	2
48	Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells. Chemical Communications, 2016, 52, 11355-11358.	4.1	58
49	Plasmonâ€Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Advanced Science, 2016, 3, 1600024.	11.2	222
50	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	10.3	137
51	Preparation of hollow Co ₉ S ₈ nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 6311-6314.	10.3	51
52	In situ growth of CuS and Cu _{1.8} S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 9595-9600.	10.3	132
53	Heterojunctions: One-Dimensional Densely Aligned Perovskite-Decorated Semiconductor Heterojunctions with Enhanced Photocatalytic Activity (Small 12/2015). Small, 2015, 11, 1435-1435.	10.0	0
54	Oneâ€Dimensional Densely Aligned Perovskiteâ€Decorated Semiconductor Heterojunctions with Enhanced Photocatalytic Activity. Small, 2015, 11, 1436-1442.	10.0	86

#	Article	IF	CITATIONS
55	Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.	14.2	609
56	Ultralong Rutile TiO2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dot-sensitized Solar Cells. Electrochimica Acta, 2014, 121, 175-182.	5.2	41
57	Garden-like perovskite superstructures with enhanced photocatalytic activity. Nanoscale, 2014, 6, 3576.	5.6	56
58	Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells. Nanoscale, 2014, 6, 3656.	5.6	77
59	Quantumâ€Dot Sensitized Solar Cells Employing Hierarchical Cu ₂ S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes. Advanced Energy Materials, 2014, 4, 1301564.	19.5	119
60	Hierarchically Structured Microspheres for High-Efficiency Rutile TiO ₂ -Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 2893-2901.	8.0	63
61	Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency. Nanoscale, 2013, 5, 11220.	5.6	26
62	Hierarchical Rutile TiO ₂ Flower Clusterâ€Based High Efficiency Dyeâ€Sensitized Solar Cells via Direct Hydrothermal Growth on Conducting Substrates. Small, 2013, 9, 312-321.	10.0	115
63	Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells. Nanoscale, 2013, 5, 6577.	5.6	46
64	Hierarchically Structured Nanotubes for Highly Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials, 2013, 25, 3039-3044.	21.0	182
65	Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 1615.	30.8	160
66	Solar Cells: Hierarchically Structured Nanotubes for Highly Efficient Dye-Sensitized Solar Cells (Adv.) Tj ETQq0 0 () rgBT /Ov	erlpck 10 Tf !
67	High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO ₂ Nanotube Arrays. Journal of the American Chemical Society, 2012, 134, 15720-15723.	13.7	571
68	Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis. Nanoscale, 2012, 4, 964-969.	5.6	70
69	Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells. Nanoscale, 2012, 4, 5872.	5.6	102
70	High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes. Nano Letters, 2011, 11, 3214-3220.	9.1	337
71	Surface-Treated TiO ₂ Nanoparticles for Dye-Sensitized Solar Cells with Remarkably Enhanced Performance. Langmuir, 2011, 27, 14594-14598.	3.5	88