Yong-li Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2282087/publications.pdf

Version: 2024-02-01

445 23,497 76
papers citations h-index

76 135 h-index g-index

449 449 docs citations

449 times ranked 24105 citing authors

#	Article	IF	CITATIONS
1	Emission properties of sequentially deposited ultrathin CH3NH3PbI3/MoS2 heterostructures. Current Applied Physics, 2022, 36, 27-33.	1.1	8
2	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electricâ€"Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	6.6	147
3	Passivating the interface between halide perovskite and SnO2 by capsaicin to accelerate charge transfer and retard recombination. Applied Physics Letters, 2022, 120, .	1.5	4
4	Ionic Liquidâ€Tuned Crystallization for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10
5	Passivation effect of NTCDA nanofilm on black phosphorus. Results in Physics, 2022, 36, 105466.	2.0	O
6	Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT). Journal of Central South University, 2022, 29, 1041-1061.	1.2	0
7	Insertion Layer Energy Level Alignment and Engineering in Organic Light-Emitting Diodes. , 2022, , 201-254.		O
8	Improved moisture resistance and interfacial recombination of perovskite solar cells by doping oleylamine in spiro-OMeTAD based hole-transport layer. Applied Physics Letters, 2022, 120, .	1.5	4
9	SnO2 modified mesoporous ZrO2 as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells. Applied Physics Letters, 2022, 120, .	1.5	6
10	Ion Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation. Advanced Energy Materials, 2021, 11, 2002552.	10.2	64
11	Angular dependent magnetoresistance in organic spin valves. Results in Physics, 2021, 22, 103963.	2.0	5
12	Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals. Energies, 2021, 14, 2005.	1.6	3
13	Creating a Dualâ€Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells. Small, 2021, 17, e2102368.	5.2	44
14	Interfacial modification for high performance photodetector based on perovskite., 2021,,.		0
15	Simultaneous Improvement of the Power Conversion Efficiency and Stability of Perovskite Solar Cells by Doping PMMA Polymer in Spiroâ€OMeTADâ€Based Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2100408.	3.1	14
16	Hybridization-Induced Inversion of Spin Polarization at Rubrene/Ferromagnetic Cobalt Interface. Journal of Physical Chemistry C, 2021, 125, 20697-20705.	1.5	1
17	Evaporation of Methylammonium lodide in Thermal Deposition of MAPbl3. Nanomaterials, 2021, 11, 2532.	1.9	6
18	Interfacial electronic structure at rubrene/NiFe heterostructure. Results in Physics, 2021, 29, 104692.	2.0	2

#	Article	IF	CITATIONS
19	Transport of charge carriers and optoelectronic applications of highly ordered metal phthalocyanine heterojunction thin films. Physical Chemistry Chemical Physics, 2021, 23, 9631-9642.	1.3	6
20	Modification of FA0.85MA0.15Pb(I0.85Br0.15)3 Films by NH2-POSS. Crystals, 2021, 11, 1544.	1.0	3
21	All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar solar cells with ZnO as electron-transporting materials. Journal of Alloys and Compounds, 2020, 817, 152768.	2.8	22
22	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	3.1	28
23	Photoemission studies of C8-BTBT/La0.67Sr0.33MnO3 interface. Synthetic Metals, 2020, 260, 116261.	2.1	9
24	Probing Phase Distribution in 2D Perovskites for Efficient Device Design. ACS Applied Materials & Interfaces, 2020, 12, 3127-3133.	4.0	39
25	Electronic structure and spin polarization of Co/black phosphorus interface. Journal of Magnetism and Magnetic Materials, 2020, 499, 166297.	1.0	5
26	Rubidium Doping to Enhance Carrier Transport in CsPbBr ₃ Single Crystals for High-Performance X-Ray Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 989-996.	4.0	84
27	All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar perovskite solar cells by a two-step temperature-control annealing process. Materials Science in Semiconductor Processing, 2020, 108, 104870.	1.9	21
28	A Subâ€10 nm Vertical Organic/Inorganic Hybrid Transistor for Painâ€Perceptual and Sensitizationâ€Regulated Nociceptor Emulation. Advanced Materials, 2020, 32, e1906171.	11.1	135
29	Effect of interfacial interaction on spin polarization at organic-cobalt interface. Organic Electronics, 2020, 78, 105567.	1.4	7
30	Angle-Resolved Photoemission Study on the Band Structure of Organic Single Crystals. Crystals, 2020, 10, 773.	1.0	5
31	Epitaxial growth of <010>-oriented MoO2 nanorods on m-sapphire. Current Applied Physics, 2020, 20, 1130-1135.	1.1	9
32	Interface electronic structure between aluminum and black phosphorus. Results in Physics, 2020, 18, 103222.	2.0	3
33	Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results in Physics, 2020, 19, 103634.	2.0	10
34	Rubidium Ions Enhanced Crystallinity for Ruddlesden–Popper Perovskites. Advanced Science, 2020, 7, 2002445.	5.6	25
35	Optoelectronic Inâ€Gaâ€Znâ€O Memtransistors for Artificial Vision System. Advanced Functional Materials, 2020, 30, 2002325.	7.8	57
36	Effective passivation of black phosphorus against atmosphere by quasi-monolayer of F4TCNQ molecules. Applied Physics Letters, 2020, 117, .	1.5	10

#	Article	IF	CITATIONS
37	Low-temperature fabrication of carbon-electrode based, hole-conductor-free and mesoscopic perovskite solar cells with power conversion efficiency > 12% and storage-stability > 220 days. Applied Physics Letters, 2020, 117, .	1.5	15
38	Modification of an ultrathin C ₆₀ interlayer on the electronic structure and molecular packing of C8-BTBT on HOPG. Physical Chemistry Chemical Physics, 2020, 22, 25264-25271.	1.3	4
39	Triphenylamine–Polystyrene Blends for Perovskite Solar Cells with Simultaneous Energy Loss Suppression and Stability Improvement. Solar Rrl, 2020, 4, 2000490.	3.1	6
40	Modification of C60 nano-interlayers on organic field-effect transistors based on 2,7-diocty[1]benzothieno-[3,2-b]benzothiophene (C8-BTBT)/SiO2. Results in Physics, 2020, 19, 103590.	2.0	5
41	SiO ₂ nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells*. Chinese Physics B, 2020, 29, 078401.	0.7	6
42	Multi-gate-driven In-Ga-Zn-O memtransistors with a Sub-60 mV/decade subthreshold swing for neuromorphic and memlogic applications. Organic Electronics, 2020, 84, 105810.	1.4	13
43	Asymmetric Fermi velocity induced chiral magnetotransport anisotropy in the type-II Dirac semi-metal PtSe2. Communications Physics, 2020, 3, .	2.0	8
44	Type-II Interface Band Alignment in the vdW PbI ₂ â€"MoSe ₂ Heterostructure. ACS Applied Materials & Applied & Applied Materials & Applied & Applied Materials & Applied & Appli	4.0	20
45	Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18Âcm2/(V s). Science Bulletin, 2020, 65, 791-795.	4.3	27
46	Interfacial Molecular Doping of Metal Halide Perovskites for Highly Efficient Solar Cells. Advanced Materials, 2020, 32, e2001581.	11.1	139
47	Light-induced degradation and self-healing inside CH3NH3PbI3-based solar cells. Applied Physics Letters, 2020, 116, .	1.5	12
48	Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization*. Chinese Physics B, 2020, 29, 076801.	0.7	2
49	Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 3989-3996.	6.6	236
50	Vapor Deposition of Perovskite Precursor PbI2 on Au and Graphite. MRS Advances, 2020, 5, 403-410.	0.5	0
51	Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Research, 2020, 13, 952-958.	5.8	25
52	Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Organic Electronics, 2020, 83, 105736.	1.4	18
53	Vapor-deposited all inorganic CsPbBr3 thin films and interface modification with C8-BTBT for high performance photodetector. Results in Physics, 2020, 17, 103087.	2.0	21
54	Mimicking optoelectronic synaptic functions in solution-processed In–Ga–Zn–O phototransistors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	11

#	Article	IF	CITATIONS
55	Interfaces between MoO $<$ sub $>$ x $<$ /sub $>$ and MoX $<$ sub $>$ 2 $<$ /sub $>$ (X = S, Se, and Te) $*$. Chinese Physics B, 2020, 29, 116802.	0.7	7
56	Organic thin film morphology, electronic structure, and effect on optoelectronic device. , 2020, , .		0
57	Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473-478.	6.0	723
58	Pbl ₂ –MoS ₂ Heterojunction: van der Waals Epitaxial Growth and Energy Band Alignment. Journal of Physical Chemistry Letters, 2019, 10, 4203-4208.	2.1	25
59	Breaking down and reconstruction of islands during the film growth of CuPc on HOPG. Applied Physics Letters, 2019, 114, .	1.5	9
60	CVD Grown MoS ₂ Nanoribbons on MoS ₂ Covered Sapphire(0001) Without Catalysts (Phys. Status Solidi RRL 7/2019). Physica Status Solidi - Rapid Research Letters, 2019, 13, 1970030.	1.2	1
61	Effects of CsPbBr3 nanocrystals concentration on electronic structure and surface composition of perovskite films. Organic Electronics, 2019, 73, 327-331.	1.4	22
62	Highâ€Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer. Advanced Energy Materials, 2019, 9, 1901419.	10.2	167
63	Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy, 2019, 66, 104095.	8.2	100
64	Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 10870-10875.	5.5	86
65	Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	12
66	2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11, 1360-1369.	2.8	195
67	High-performance solar-blind SnO ₂ nanowire photodetectors assembled using optical tweezers. Nanoscale, 2019, 11, 2162-2169.	2.8	49
68	Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 2019, 62, 393-400.	8.2	100
69	A homogeneous p–n junction diode by selective doping of few layer MoSe ₂ using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale, 2019, 11, 13469-13476.	2.8	41
70	Analysis of light-induced degradation in inverted perovskite solar cells under short-circuited conditions. Organic Electronics, 2019, 71, 123-130.	1.4	22
71	Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors. Organic Electronics, 2019, 71, 72-78.	1.4	40
72	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	19.8	831

#	Article	IF	Citations
73	CVD Grown MoS 2 Nanoribbons on MoS 2 Covered Sapphire(0001) Without Catalysts. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900063.	1.2	26
74	Interface Energy-Level Alignment between Black Phosphorus and F ₁₆ CuPc Molecular Films. Journal of Physical Chemistry C, 2019, 123, 10443-10450.	1.5	12
75	Accelerated hole-extraction in carbon-electrode based planar perovskite solar cells by moisture-assisted post-annealing. Applied Physics Letters, 2019, 114, .	1.5	42
76	Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15, 389-397.	2.3	41
77	Stress-sign-tunable Poisson's ratio in monolayer blue phosphorus oxide. Journal of Physics Condensed Matter, 2019, 31, 295702.	0.7	12
78	Electronic structure evolution at DBBA/Au(111) interface W/O Bismuth insertion layer. Synthetic Metals, 2019, 251, 24-29.	2.1	10
79	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. Journal of Materials Chemistry C, 2019, 7, 5488-5496.	2.7	19
80	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrateâ∈Heatingâ∈Assisted Deposition. Solar Rrl, 2019, 3, 1800318.	3.1	37
81	<i $>$ In situ $<$ i $>$ surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells. Applied Physics Letters, 2019, 115, .	1.5	25
82	Structural and electronic properties of atomically thin Bismuth on Au(111). Surface Science, 2019, 679, 147-153.	0.8	29
83	Interfacial electronic structures of MoOx/mixed perovskite photodetector. Organic Electronics, 2019, 65, 162-169.	1.4	30
84	Cobalt hydroxide-black phosphorus nanosheets: A superior electrocatalyst for electrochemical oxygen evolution. Electrochimica Acta, 2019, 297, 40-45.	2.6	27
85	Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. Npj Flexible Electronics, $2018, 2, \ldots$	5.1	54
86	Efficient, stable and flexible perovskite solar cells using two-step solution-processed SnO2 layers as electron-transport-material. Organic Electronics, 2018, 58, 126-132.	1.4	31
87	Efficient and stable hole-conductor-free mesoscopic perovskite solar cells using SiO 2 as blocking layer. Organic Electronics, 2018, 58, 69-74.	1.4	22
88	Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Organic Electronics, 2018, 55, 140-145.	1.4	39
89	Lowâ€√emperature Processed, Efficient, and Highly Reproducible Cesiumâ€Doped Triple Cation Perovskite Planar Heterojunction Solar Cells. Solar Rrl, 2018, 2, 1700209.	3.1	113
90	Environmental Surface Stability of the MAPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2018, 122, 3513-3522.	1.5	66

#	Article	IF	Citations
91	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	11.1	81
92	Epitaxial Growth of Highly Oriented Metallic MoO ₂ @MoS ₂ Nanorods on C-sapphire. Journal of Physical Chemistry C, 2018, 122, 1860-1866.	1.5	33
93	Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer. Journal of Power Sources, 2018, 390, 134-141.	4.0	25
94	Fast-response and high-responsivity FA MA(1â^')PbI3 photodetectors fabricated via doctor-blading deposition in ambient condition. Organic Electronics, 2018, 52, 190-194.	1.4	23
95	Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells. Journal Physics D: Applied Physics, 2018, 51, 025110.	1.3	15
96	Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material. Organic Electronics, 2018, 53, 235-241.	1.4	66
97	Congeneric Incorporation of CsPbBr ₃ Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement. ACS Energy Letters, 2018, 3, 30-38.	8.8	106
98	Manipulating three-dimensional bending to extraordinarily stiffen two-dimensional membranes by interference colors. Nanoscale, 2018, 10, 21782-21789.	2.8	6
99	Intrinsic Behavior of CH ₃ NH ₃ PbBr ₃ Single Crystals under Light Illumination. Advanced Materials Interfaces, 2018, 5, 1801206.	1.9	18
100	Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Applied Physics Letters, 2018, 113, .	1.5	84
101	Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers. Synthetic Metals, 2018, 246, 101-107.	2.1	18
102	Highly Efficient, Solution-Processed CsPbI ₂ Br Planar Heterojunction Perovskite Solar Cells via Flash Annealing. ACS Photonics, 2018, 5, 4104-4110.	3.2	64
103	Dependence of power conversion properties of perovskite solar cells on operating temperature. Applied Physics Letters, 2018, 113, .	1.5	23
104	Interfacial Electronic Structures of Photodetectors Based on C8BTBT/Perovskite. ACS Applied Materials & Capplied & Capplied Materials & Capplied Materials & Capplied & Capplied	4.0	13
105	Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating. Journal of Applied Physics, 2018, 123, .	1.1	15
106	Stability of Perovskites at the Surface Analytic Level. Journal of Physical Chemistry Letters, 2018, 9, 4657-4666.	2.1	17
107	Abnormal nonlinear optical properties of hybrid graphene-TiO_2 nanostructures. Optics Letters, 2018, 43, 523.	1.7	28
108	From MoO ₂ @MoS ₂ Core–Shell Nanorods to MoS ₂ Nanobelts. Physica Status Solidi (B): Basic Research, 2018, 255, 1800254.	0.7	23

#	Article	IF	CITATIONS
109	Coplanar Multigate MoS ₂ Electric-Double-Layer Transistors for Neuromorphic Visual Recognition. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25943-25948.	4.0	99
110	Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Organic Electronics, 2018, 61, 119-124.	1.4	36
111	Interface Electronic Structure between Au and Black Phosphorus. Journal of Physical Chemistry C, 2018, 122, 18405-18411.	1.5	7
112	Flexible Neuromorphic Architectures Based on Self-Supported Multiterminal Organic Transistors. ACS Applied Materials & Diterfaces, 2018, 10, 26443-26450.	4.0	99
113	Accelerated electron extraction and improved UV stability of TiO2 based perovskite solar cells by SnO2 based surface passivation. Organic Electronics, 2018, 59, 184-189.	1.4	45
114	Energy Level Evolution and Oxygen Exposure of Fullerene/Black Phosphorus Interface. Journal of Physical Chemistry Letters, 2018, 9, 5254-5261.	2.1	13
115	Dependence of power conversion properties of the hole-conductor-free mesoscopic perovskite solar cells on the thickness of carbon film. Organic Electronics, 2018, 62, 298-303.	1.4	23
116	Electronic Structures and Nanofilm Growth of 2,7-Dioctyl[1]Benzothieno[3,2-b]Benzothiophene on Black Phosphorus. Journal of Nanoscience and Nanotechnology, 2018, 18, 4332-4336.	0.9	2
117	Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Applied Physics Letters, 2018, 112, .	1.5	84
118	Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale, 2017, 9, 4683-4690.	2.8	98
119	Valence band dispersion measurements of perovskite single crystals using angle-resolved photoemission spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 5361-5365.	1.3	32
120	Interfacial chemical and electronic structure of cobalt deposition on 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT). Applied Surface Science, 2017, 402, 142-146.	3.1	6
121	Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag α-graphyne nanoribbons. Organic Electronics, 2017, 44, 168-175.	1.4	46
122	Stable monolithic hole-conductor-free perovskite solar cells using TiO 2 nanoparticle binding carbon films. Organic Electronics, 2017, 45, 131-138.	1.4	49
123	Air-Induced High-Quality CH ₃ NH ₃ Pbl ₃ Thin Film for Efficient Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 6575-6580.	1.5	47
124	Light-Induced Degradation of CH ₃ NH ₃ PbI ₃ Hybrid Perovskite Thin Film. Journal of Physical Chemistry C, 2017, 121, 3904-3910.	1.5	265
125	Organic Phototransistors: Highâ€Performance Organic Heterojunction Phototransistors Based on Highly Ordered Copper Phthalocyanine/ <i>para</i> à6€Sexiphenyl Thin Films (Adv. Funct. Mater. 6/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
126	Chiral Self-Assembly of Nonplanar 10,10′-Dibromo-9,9′-bianthryl Molecules on Ag(111). Langmuir, 2017, 33, 2993-2999.	1.6	15

#	Article	IF	CITATIONS
127	Spatially-correlated neuron transistors with ion-gel gating for brain-inspired applications. Organic Electronics, 2017, 44, 25-31.	1.4	38
128	Multi-gate organic neuron transistors for spatiotemporal information processing. Applied Physics Letters, 2017, 110, .	1.5	117
129	Orientation-specific transgranular fracture behavior of CVD-grown monolayer MoS2 single crystal. Applied Physics Letters, 2017, 110, .	1.5	21
130	Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Organic Electronics, 2017, 47, 126-132.	1.4	70
131	High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Organic Electronics, 2017, 47, 102-107.	1.4	34
132	Fullerene (C60) interlayer modification on the electronic structure and the film growth of 2,7-diocty[1]benzothieno-[3,2-b]benzothiophene on SiO2. Synthetic Metals, 2017, 229, 1-6.	2.1	14
133	Highâ€Performance Broadband Perovskite Photodetectors Based on CH ₃ NH ₃ Pbl ₃ /C8BTBT Heterojunction. Advanced Electronic Materials, 2017, 3, 1700058.	2.6	101
134	Interface electronic structure and morphology of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on Au film. Applied Surface Science, 2017, 416, 696-703.	3.1	17
135	2D MoS ₂ Neuromorphic Devices for Brainâ€Like Computational Systems. Small, 2017, 13, 1700933.	5.2	268
136	Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles. Chinese Physics B, 2017, 26, 058401.	0.7	15
137	Degradation behavior of planar heterojunction CH 3 NH 3 PbI 3 perovskite solar cells. Synthetic Metals, 2017, 227, 43-51.	2.1	31
138	Efficient planar heterojunction perovskite solar cells fabricated by in-situ thermal-annealing doctor blading in ambient condition. Organic Electronics, 2017, 45, 302-307.	1.4	90
139	Highâ€Performance Organic Heterojunction Phototransistors Based on Highly Ordered Copper Phthalocyanine/ <i>para</i> à€Sexiphenyl Thin Films. Advanced Functional Materials, 2017, 27, 1604933.	7.8	64
140	The correlations of the electronic structure and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on SiO ₂ . Physical Chemistry Chemical Physics, 2017, 19, 1669-1676.	1.3	34
141	Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11297-11302.	3.3	53
142	Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide. Applied Physics Letters, 2017, 111, .	1.5	56
143	Effects of monolayer Bi on the self-assembly of DBBA on Au(111). Surface Science, 2017, 665, 89-95.	0.8	30
144	Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons. Chinese Physics B, 2017, 26, 098509.	0.7	8

#	Article	IF	CITATIONS
145	Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/ <i>para</i> i>-Sexiphenyl Heterojunctions. ACS Photonics, 2017, 4, 2573-2579.	3.2	68
146	High electrical conductivity of individual epitaxially grown MoO2 nanorods. Applied Physics Letters, 2017, 111, .	1.5	46
147	Charge Transfer at the PTCDA/Black Phosphorus Interface. Journal of Physical Chemistry C, 2017, 121, 18084-18094.	1.5	46
148	Electronic structures at the interface between CuPc and black phosphorus. Journal of Chemical Physics, 2017, 147, 064702.	1.2	12
149	Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49, 347-354.	1.4	70
150	Substrate induced anomalous electrostatic and photoluminescence propeties of monolayer MoS 2 edges. Solid State Communications, 2017, 249, 1-6.	0.9	9
151	Chemical vapor deposition growth and characterization of drop-like MoS ₂ /MoO ₂ granular films. Physica Status Solidi (B): Basic Research, 2017, 254, 1600245.	0.7	16
152	Tri-phase all-optical switching and broadband nonlinear optical response in Bi_2Se_3 nanosheets. Optics Express, 2017, 25, 18346.	1.7	44
153	Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates. Crystals, 2016, 6, 113.	1.0	24
154	E'' Raman Mode in Thermal Strain-Fractured CVD-MoS2. Crystals, 2016, 6, 151.	1.0	17
155	Fractureâ€induced nanoscrolls from CVDâ€grown monolayer molybdenum disulfide. Physica Status Solidi - Rapid Research Letters, 2016, 10, 549-553.	1.2	14
156	High-performance ultraviolet photodetectors based on CdS/CdS:SnS ₂ superlattice nanowires. Nanoscale, 2016, 8, 14580-14586.	2.8	54
157	Evolution of the electronic structure of C60/La0.67Sr0.33MnO3 interface. Applied Physics Letters, 2016, 108, .	1.5	35
158	Surface Analytical Investigation on Organometal Triiodide Perovskite. Materials Research Society Symposia Proceedings, 2016, 1735, 151.	0.1	0
159	Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain. AIP Advances, 2016, 6, 035116.	0.6	6
160	Ultra-broadband Nonlinear Saturable Absorption for Two-dimensional Bi2TexSe3â^'x Nanosheets. Scientific Reports, 2016, 6, 33070.	1.6	55
161	Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Applied Physics Letters, 2016, 108, .	1.5	56
162	Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG. Journal of Chemical Physics, 2016, 144, 034701.	1.2	33

#	Article	IF	Citations
163	Effect of a MoO ₃ buffer layer between C8-BTBT and Co(100) single-crystal film. RSC Advances, 2016, 6, 112403-112408.	1.7	12
164	Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains. Journal of Chemical Physics, 2016, 145, 084704.	1.2	13
165	Controllable growth and electrostatic properties of Bernal stacked bilayer MoS2. Journal of Applied Physics, 2016, 120, .	1.1	13
166	lodine and Chlorine Element Evolution in CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	3.2	48
167	Degradation of Co-Evaporated Perovskite Thin Films. MRS Advances, 2016, 1, 923-929.	0.5	4
168	Broadband spatial self-phase modulation of black phosphorous. Optics Letters, 2016, 41, 1704.	1.7	111
169	Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 26169-26175.	4.0	138
170	Controllable growth and characterizations of hybrid spiral-like atomically thin molybdenum disulfide. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 378-383.	1.3	6
171	Solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors. Organic Electronics, 2016, 38, 357-361.	1.4	42
172	Bio-inspired coplanar-gate-coupled ITO-free oxide-based transistors employing natural nontoxic bio-polymer electrolyte. Organic Electronics, 2016, 37, 474-478.	1.4	16
173	Enhanced Nonlinear Optical Response of Rectangular MoS ₂ and MoS ₂ /TiO ₂ in Dispersion and Film. Journal of Physical Chemistry C, 2016, 120, 18243-18248.	1.5	49
174	Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19658-19664.	4.0	24
175	Modification of Ultrathin NPB Interlayer on the Electronic Structures of the CH ₃ NH ₃ Pbl ₃ /NPB/MoO ₃ Interface. Journal of Physical Chemistry C, 2016, 120, 17863-17871.	1.5	32
176	lon-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses. Organic Electronics, 2016, 39, 64-70.	1.4	62
177	Hydrogenations and electric field induced magnetic behaviors in armchair silicene nanoribbons. Scientific Reports, 2016, 6, 23677.	1.6	29
178	High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar heterojunction perovskite solar cells. Organic Electronics, 2016, 39, 304-310.	1.4	27
179	Artificial synapses based on biopolymer electrolyte-coupled SnO ₂ nanowire transistors. Journal of Materials Chemistry C, 2016, 4, 11110-11117.	2.7	52
180	Quenching induced fracture behaviors of CVD-grown polycrystalline molybdenum disulfide films. RSC Advances, 2016, 6, 59816-59822.	1.7	10

#	Article	IF	CITATIONS
181	Controllable thin-film morphology and structure for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8BTBT) based organic field-effect transistors. Organic Electronics, 2016, 36, 73-81.	1.4	55
182	Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8, 5350-5357.	2.8	213
183	Effects of Precursor Ratios and Annealing on Electronic Structure and Surface Composition of CH ₃ NH ₃ Pbl ₃ Perovskite Films. Journal of Physical Chemistry C, 2016, 120, 215-220.	1.5	108
184	Low contact resistance in solid electrolyte-gated ZnO field-effect transistors with ferromagnetic contacts. Journal of Materials Chemistry C, 2016, 4, 150-156.	2.7	6
185	Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10, 333-339.	15.6	1,271
186	Prominent Efficiency Enhancement in Perovskite Solar Cells Employing Silica-Coated Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 6996-7004.	1.5	87
187	Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300ŰC. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	21
188	Degradation of co-evaporated perovskite thin film in air. Chemical Physics Letters, 2016, 649, 151-155.	1.2	39
189	Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electronics, 2016, 30, 30-35.	1.4	100
190	Investigation of the dynamic bending properties of MoS2 thin films by interference colours. Scientific Reports, 2015, 5, 18441.	1.6	10
191	Electronic structure evolution in doping of fullerene (C60) by ultra-thin layer molybdenum trioxide. Journal of Applied Physics, 2015, 118, .	1.1	7
192	Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	1.4	94
193	Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets. Scientific Reports, 2015, 5, 9961.	1.6	181
194	Air-stable and high-performance organic field-effect transistors based on ordered, large-domain phthalocyanine copper thin film. Synthetic Metals, 2015, 210, 336-341.	2.1	34
195	Interfacial electronic structures of buffer-modified pentacene/C60-based charge generation layer. Organic Electronics, 2015, 17, 325-333.	1.4	39
196	Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Organic Electronics, 2015, 17, 253-261.	1.4	45
197	Hydroxyapatite Thin Films with Giant Electrical Polarization. Chemistry of Materials, 2015, 27, 1164-1171.	3.2	35
198	Thickness-Dependent Air-Exposure-Induced Phase Transition of CuPc Ultrathin Films to Well-Ordered One-Dimensional Nanocrystals on Layered Substrates. Journal of Physical Chemistry C, 2015, 119, 4217-4223.	1,5	36

#	Article	IF	Citations
199	Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Advances, 2015, 5, 14567-14574.	1.7	49
200	Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Organic Electronics, 2015, 26, 265-272.	1.4	83
201	Effects of annealing on structure and composition of LSMO thin films. Physica B: Condensed Matter, 2015, 477, 14-19.	1.3	47
202	Delineation of degradation patterns of C60-based organic solar cells under different environments. Journal of Applied Physics, 2015, 117, .	1.1	3
203	Crystal-Domain Orientation and Boundary in Highly Ordered Organic Semiconductor Thin Film. Journal of Physical Chemistry C, 2015, 119, 14965-14971.	1.5	33
204	Controllable fabrication of copper phthalocyanine nanostructure crystals. Nanotechnology, 2015, 26, 225601.	1.3	17
205	Electronic structure evolution of fullerene on CH3NH3PbI3. Applied Physics Letters, 2015, 106, .	1.5	44
206	Improvement of Charge Transfer Between Electrode and Semiconductor by Thin Metal Oxide Insertion. Topics in Applied Physics, 2015, , 67-99.	0.4	0
207	Surface analytical investigation on organometal triiodide perovskite. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	43
208	Degradation by Exposure of Coevaporated CH ₃ NH ₃ PbI ₃ Thin Films. Journal of Physical Chemistry C, 2015, 119, 23996-24002.	1.5	112
209	Effect of length and negative differential resistance behavior in conjugated molecular wire tetrathiafulvalene devices. Modern Physics Letters B, 2015, 29, 1550106.	1.0	3
210	Molecular orientation of copper phthalocyanine thin films on different monolayers of fullerene on SiO2 or highly oriented pyrolytic graphite. Applied Physics Letters, 2015, 106, .	1.5	12
211	Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Applied Physics Letters, 2015, 106, .	1.5	152
212	Electronic structures and transport properties of zigzag BNC nanoribbons with different combinations of BN and graphene nanoribbons. Computational Condensed Matter, 2015, 4, 40-45.	0.9	15
213	Investigation on thermal evaporated CH3NH3PbI3 thin films. AIP Advances, 2015, 5, .	0.6	42
214	Interface modification of organic photovoltaics by combining molybdenum oxide (MoOx) and molecular template layer. Thin Solid Films, 2015, 574, 146-151.	0.8	13
215	Electronic structures at the interface between Au and CH ₃ NH ₃ Pbl ₃ . Physical Chemistry Chemical Physics, 2015, 17, 896-902.	1.3	82
216	Interface Modification for Organic Solar Cells. , 2015, , .		0

#	Article	IF	Citations
217	Protection of MoO ₃ high work function by organic thin film. Applied Physics Letters, 2014, 105, 181602.	1.5	9
218	SPIN-FILTERING, RECTIFYING AND NEGATIVE DIFFERENTIAL RESISTANCE BEHAVIORS IN Co(dmit)2 MOLECULAR DEVICES WITH MONATOMIC (C, Fe, Au) ELECTRODES. Spin, 2014, 04, 1440016.	0.6	0
219	Te/Cu bi-layer: A low-resistance back contact buffer for thin film CdS/CdTe solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 411-420.	3.0	32
220	Electronic structure evolution in doping of fullerene (C60) by molybdenum trioxide. Applied Physics Letters, 2014, 105, 111601.	1.5	8
221	Incorporating Isolated Molybdenum (Mo) Atoms into Bilayer Epitaxial Graphene on 4H-SiC(0001). ACS Nano, 2014, 8, 970-976.	7.3	23
222	Mobility enhancement of SnO ₂ nanowire transistors gated with a nanogranular SiO ₂ solid electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 1084-1088.	1.3	10
223	High Performance Allâ€Polymer Solar Cell via Polymer Sideâ€Chain Engineering. Advanced Materials, 2014, 26, 3767-3772.	11.1	320
224	Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy and Environmental Science, 2014, 7, 2619-2623.	15.6	1,154
225	Electronic structure evolution and energy level alignment at C60/4,4′-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]/MoOx/indium tin oxide interfaces. Journal of Applied Physics, 2014, 115, .	1.1	36
226	Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4776-4781.	3.3	179
227	Qualifying composition dependent $\langle i \rangle p \langle i \rangle$ and $\langle i \rangle n \langle i \rangle$ self-doping in CH3NH3PbI3. Applied Physics Letters, 2014, 105, .	1.5	518
228	Ion-dependent gate dielectric characteristics of ion-conducting SiO2 solid-electrolytes in oxide field-effect transistors. Physical Chemistry Chemical Physics, 2014, 16, 7455.	1.3	5
229	Role of molybdenum oxide for organic electronics: Surface analytical studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 040801.	0.6	41
230	Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, 2014, 2, 18508-18514.	5.2	276
231	Organic field-effect transistor and its photoresponse using a benzo[1,2-b:4,5-b′]difuran-based donor–acceptor conjugated polymer. Organic Electronics, 2014, 15, 1050-1055.	1.4	88
232	Effect of oxygen plasma treatment on air exposed MoOx thin film. Organic Electronics, 2014, 15, 977-983.	1.4	32
233	Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Organic Electronics, 2014, 15, 835-843.	1.4	61
234	Efficient and stable inverted polymer solar cells using TiO2 nanoparticles and analysized by Mott-Schottky capacitance. Organic Electronics, 2014, 15, 1745-1752.	1.4	41

#	Article	IF	CITATIONS
235	Theoretical Prediction of Electronic Structure and Carrier Mobility in Single-walled MoS2 Nanotubes. Scientific Reports, 2014, 4, 4327.	1.6	58
236	van der Waals heterostructure about CuPc/MoS2(0001). Wuli Xuebao/Acta Physica Sinica, 2014, 63, 167903.	0.2	10
237	Ordered nanocolumn-array organic semiconductor thin films with controllable molecular orientation. Applied Surface Science, 2013, 286, 104-108.	3.1	11
238	Orientation-dependent ionization potential of CuPc and energy level alignment at C60/CuPc interface. Applied Physics B: Lasers and Optics, 2013, 113, 361-365.	1.1	19
239	Manipulation of interface electronic structure by thin metal oxide films. Materials Research Society Symposia Proceedings, 2013, 1537, 1.	0.1	O
240	Effect of air exposure of MoO ₃ film underneath thin CuPc layers. Materials Research Society Symposia Proceedings, 2013, 1493, 287-292.	0.1	1
241	MoO _x as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells. Materials Research Society Symposia Proceedings, 2012, 1447, 45.	0.1	2
242	Work function recovery of air exposed molybdenum oxide thin films. Applied Physics Letters, 2012, 101, 093305.	1.5	105
243	Pinning of fullerene lowest unoccupied molecular orbital edge at the interface with standing up copper phthalocyanine. Thin Solid Films, 2012, 525, 64-67.	0.8	11
244	Interplay of cleaning and de-doping in oxygen plasma treated high work function indium tin oxide (ITO). Organic Electronics, 2012, 13, 2028-2034.	1.4	32
245	Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano, 2012, 6, 10384-10395.	7.3	154
246	The effect of MoOx inter-layer on thin film CdTe/CdS solar cell. Solar Energy Materials and Solar Cells, 2012, 105, 86-89.	3.0	29
247	Methods to protect and recover work function of air exposed transition metal oxide thin films. Proceedings of SPIE, 2012, , .	0.8	4
248	Effects of exposure and air annealing on <inline-formula><math display="inline" overflow="scroll"><mrow><mi>Mo</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></inline-formula> thin films. Journal of Photonics for Energy, 2012, 2, 021213.	0.8	33
249	High-Efficiency Inverted Polymer Solar Cells with Double Interlayer. ACS Applied Materials & Samp; Interfaces, 2012, 4, 866-870.	4.0	63
250	Strong and Stable Doping of Carbon Nanotubes and Graphene by MoO _{<i>x</i>} for Transparent Electrodes. Nano Letters, 2012, 12, 3574-3580.	4.5	146
251	MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability. Solar Energy Materials and Solar Cells, 2012, 99, 349-355.	3.0	56
252	Nitric–phosphoric acid etching effects on the surface chemical composition of CdTe thin film. Thin Solid Films, 2012, 520, 1988-1992.	0.8	6

#	Article	IF	CITATIONS
253	Strong interface p-doping and band bending in C60 on MoOx. Organic Electronics, 2011, 12, 1588-1593.	1.4	67
254	Photoemission Spectroscopy Characterization of Attempts to Deposit MoO ₂ Thin Film. International Journal of Photoenergy, 2011, 2011, 1-6.	1.4	9
255	Metal-Oxides Hole Injection/Extraction Layer in Organic Semiconductor Devices. ECS Transactions, 2011, 35, 11-22.	0.3	2
256	Band structure measurement of organic single crystal with angle-resolved photoemission. Applied Physics Letters, 2010, 96, 222106.	1.5	43
257	Rubrene electronic structure, interface energy level alignment, and growth dynamics. , 2010, , .		3
258	Evolution of the electronic structure of alkali metal-doped copper-phthalocyanine (CuPc) on different metal substrates. Organic Electronics, 2010, 11, 1786-1791.	1.4	13
259	Surface analytical studies of interfaces in organic semiconductor devices. Materials Science and Engineering Reports, 2010, 68, 39-87.	14.8	215
260	Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor. Applied Physics Letters, 2010, 96, 073304.	1.5	114
261	Organic Schottky barrier photovoltaic cells based on MoOx/C60. Applied Physics Letters, 2010, 96, .	1.5	110
262	Energy level evolution of air and oxygen exposed molybdenum trioxide films. Applied Physics Letters, 2010, 96, .	1.5	189
263	Inverse square-root field dependence of conductivity in organic field-effect transistors. Applied Physics Letters, 2009, 94, .	1.5	15
264	Electronic structure at rubrene metal interfaces. Applied Physics A: Materials Science and Processing, 2009, 95, 89-94.	1.1	25
265	Determination of spin injection and transport inÂaÂferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Materials, 2009, 8, 115-119.	13.3	266
266	Evolution of the unoccupied states in alkali metal-doped organic semiconductor. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 45-49.	0.8	6
267	Aluminum phthalocyanine chloride/C60 organic photovoltaic cells with high open-circuit voltages. Solar Energy Materials and Solar Cells, 2009, 93, 1688-1691.	3.0	67
268	Electronic structure and interactions of LiF doped tris (8-hydroxyquinoline) aluminum (Alq). Chemical Physics Letters, 2009, 473, 92-95.	1.2	7
269	Fullerene/Thiol-Terminated Molecules. Journal of Organic Chemistry, 2009, 74, 7885-7897.	1.7	34
270	The effect of molybdenum oxide interlayer on organic photovoltaic cells. Applied Physics Letters, 2009, 95, .	1.5	190

#	Article	IF	CITATIONS
271	New organic semiconductors for thin-film transistors: Synthesis, characterization, and performance of 4H-indeno[1,2-b]thiophene derivatives. Synthetic Metals, 2009, 159, 995-1001.	2.1	10
272	Interface study of insertion layers in organic semiconductor devices., 2009,,.		3
273	The effect of molybdenum trioxide inter-layer between indium tin oxide (ITO) and organic semiconductor on the energy level alignment. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	0.1	2
274	Interface in Organic Semiconductor Devices. , 2009, , 141-179.		1
275	The Role of LiF for the Electron Injection in tris-(8-hydroxyquinoline) Aluminum. ECS Transactions, 2008, 11, 25-33.	0.3	0
276	Modification on the Electronic Structure of Organic Semiconductor by Alkali Metal. ECS Transactions, 2008, 11, 1-13.	0.3	1
277	Electronic structure modification of copper phthalocyanine (CuPc) induced by intensive Na doping. Chemical Physics Letters, 2008, 454, 229-232.	1.2	22
278	Silicon/Molecule Interfacial Electronic Modifications. Journal of the American Chemical Society, 2008, 130, 1699-1710.	6.6	83
279	Evolution of the unoccupied states in Cs-doped copper phthalocyanine. Applied Physics Letters, 2008, 92, 053309.	1.5	29
280	Spin injection and spin dynamics at the CuPc/GaAs interface studied with ultraviolet photoemission spectroscopy and two-photon photoemission spectroscopy. Physical Review B, 2008, 78, .	1.1	20
281	Mechanism of LiF interlayer for electron injection. Proceedings of SPIE, 2008, , .	0.8	2
282	Electronic structure of doping in organic semiconductor., 2008,,.		3
283	REVERSAL OF DOPING INDUCED ENERGY LEVEL SHIFT IN ORGANIC SEMICONDUCTORS. International Journal of Nanoscience, 2007, 06, 125-129.	0.4	1
284	Modification on the Unoccupied Electronic Structure of Organic Semiconductor by Alkali Metal. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	0
285	Electronic Structure of Interfaces Between Hexadecafluoro-phthalocyanine and 2,5-bis(4-biphenylyl) Bithiophene. ECS Transactions, 2007, 11, 15-24.	0.3	0
286	Photoemission study of oxygen and Au modification of doped copper phthalocyanine. Journal of Applied Physics, 2007, 102, .	1.1	20
287	Auâ^·LiF/tris(8-hydroxyquinoline) aluminum interfaces. Applied Physics Letters, 2007, 91, 172107.	1.5	13
288	Photoemission Investigation of the Energy Level Alignment at the Rubrene/metal Interface. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	0

#	Article	IF	Citations
289	Electronic structure of interfaces between copper-hexadecafluoro-phthalocyanine and 2,5-bis(4-biphenylyl) bithiophene. Applied Physics Letters, 2007, 91, .	1.5	49
290	Alkali metal doping and energy level shift in organic semiconductors. Applied Surface Science, 2006, 252, 3943-3947.	3.1	20
291	Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface. Journal of Applied Physics, 2006, 100, 113706.	1.1	6
292	Spin Injection and Spin Dynamics at CuPC/GaAs(100) Interface. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
293	Direct observation of the evolution of occupied and unoccupied energy levels of two silole derivatives at their interfaces with magnesium. Journal of Applied Physics, 2006, 100, 103706.	1.1	11
294	Fractal-mound growth of pentacene thin films. Physical Review B, 2006, 74, .	1.1	55
295	Femtosecond time-resolved two-photon photoemission study of organic semiconductor copper phthalocyanine film. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 327-329.	0.8	7
296	Electronic structure of Cs-doped tris(8-hydroxyquinoline) aluminum. Applied Physics Letters, 2005, 86, 213508.	1.5	56
297	Experimental study on thickness-related electrical characteristics in organic/metal-nanocluster/organic systems. Journal of Applied Physics, 2005, 98, 054303.	1.1	40
298	Feasibility of static induction transistor with organic semiconductors. Applied Physics Letters, 2005, 86, 193508.	1.5	34
299	Reversal of doping-induced energy level shift: Au on Cs-doped tris(8-hydroxyquinoline) aluminum. Applied Physics Letters, 2005, 87, 051918.	1.5	13
300	Interface formation of pentacene on Al2O3. Journal of Applied Physics, 2004, 96, 425-429.	1.1	25
301	Effect of oxidation on charge localization and transport in a single layer of silicon nanocrystals. Journal of Applied Physics, 2004, 96, 654-660.	1.1	23
302	Direct observation of the evolution of both the HOMO and LUMO energy levels of a silole derivative at a magnesium/silole interface. , 2004, , .		4
303	Cs doping and energy level shift in CuPc. Chemical Physics Letters, 2003, 380, 451-455.	1.2	55
304	Interface formation and energy level alignment of pentacene on SiO2. Journal of Applied Physics, 2003, 94, 5782-5786.	1.1	38
305	Fermi level pinning in Cs doped CuPc. Synthetic Metals, 2003, 137, 1037-1038.	2.1	3
306	Platinum-Maghemite Coreâ^'Shell Nanoparticles Using a Sequential Synthesis. Nano Letters, 2003, 3, 261-264.	4.5	400

#	Article	IF	Citations
307	Vacuum level alignment of pentacene on LiF/Au. Journal of Applied Physics, 2003, 94, 1289-1291.	1.1	34
308	Hot-electron relaxation in the layered semiconductor2Hâ^'MoS2studied by time-resolved two-photon photoemission spectroscopy. Physical Review B, 2003, 67, .	1.1	17
309	Photoemission spectroscopy study of the interface formation in organic thin film transistors. , 2003, , .		0
310	Evidence of electron and hole transfer in metal/CuPc interfaces. , 2003, , .		4
311	Growth front kinetics of perylene on glass and Au substrates. , 2003, , .		0
312	Kinetic roughening study of perylene on glass and Au substrates. Applied Physics Letters, 2002, 81, 5195-5197.	1.5	11
313	Time-Resolved Two-Photon Photoemission Study of Dodecanethiolate-Passivated Ag Nanoparticles. Journal of the Physical Society of Japan, 2002, 71, 3098-3099.	0.7	2
314	Thermodynamic equilibrium and metal-organic interface dipole. Applied Physics Letters, 2002, 81, 2752-2754.	1.5	79
315	Electronic structure symmetry of interfaces between pentacene and metals. Applied Physics Letters, 2002, 80, 4384-4386.	1.5	242
316	Interfaces in organic semiconductor devices. Thin Solid Films, 2002, 417, 101-106.	0.8	40
317	Interfacial chemistry of Alq3 and LiF with reactive metals. Journal of Applied Physics, 2001, 89, 2756-2765.	1.1	339
318	Morphology and Current–Voltage Characteristics of Nanostructured Pentacene Thin Films Probed by Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2001, 1, 317-321.	0.9	7
319	INTERFACES IN ORGANIC LIGHT-EMITTING DEVICES. , 2001, , 285-327.		5
320	A photoemission spectroscopic study of the interface formation in organic thin film transistors. Materials Research Society Symposia Proceedings, 2001, 708, 231.	0.1	0
321	Energy level alignment in metal/organic interfaces: Ca/Alq 3 and Al/Alq 3., 2001,,.		2
322	<title>Photoemission characterization of interfaces between Au and pentacene</title> ., 2001,,.		5
323	Photoemission study of energy alignment at the metal/Alq3 interfaces. Applied Surface Science, 2001, 175-176, 412-418.	3.1	47
324	Direct observation of Fermi-level pinning in Cs-doped CuPc film. Applied Physics Letters, 2001, 79, 4148-4150.	1.5	83

#	Article	IF	Citations
325	Femtosecond Photoemission Study of Relaxation and Interface Charge Transfer Dynamics in Organic Photoreceptors., 2001,,.		O
326	Energy Level Alignment at the Metal/Alq3 Interfaces Investigated with Photoemission Methods. Materials Research Society Symposia Proceedings, 2000, 660, 1 .	0.1	0
327	Current-Voltage Measurements as a Function of Applied Tip Force on Pentacene by Conducting Probe Microscopy. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
328	Current-Voltage Measurements as a Function of Applied Tip Force on Pentacene by Conducting Probe Microscopy. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	1
329	Interface Formation Between Silver and Pentacene: A Photoemission Spectroscopy Study. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
330	Energy Level Alignment at the Metal/Alq3 Interfaces Investigated with Photoemission Methods. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
331	Interface formation between NPB and processed indium tin oxide. Thin Solid Films, 2000, 363, 42-46.	0.8	50
332	Molecular beam epitaxial growth of BGaAs ternary compounds. Journal of Electronic Materials, 2000, 29, 1387-1391.	1.0	47
333	Interface Formation Between Silver and Pentacene: A Photoemission Spectroscopy Study. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	1
334	Scanning tunneling microscopy study of Si(111) surface morphology after removal of SiO2 by synchrotron radiation illumination. Applied Physics Letters, 2000, 76, 1392-1394.	1.5	18
335	Scanning tunneling microscopy study of surface morphology of Si(111) after synchrotron radiation stimulated desorption of SiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1153-1157.	0.9	8
336	Photoemission spectroscopic investigation on the interface formation of a ladder-type poly(para-phenylene) with aluminum. Applied Physics Letters, 2000, 76, 3738-3740.	1.5	6
337	Influence of copper phthalocynanine on the charge injection and growth modes for organic light emitting diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1869-1874.	0.9	52
338	Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces. Journal of Applied Physics, 2000, 87, 375-379.	1.1	188
339	Tuning the Carrier Injection Efficiency for Organic Light-Emitting Diodesâ€. Journal of Physical Chemistry B, 2000, 104, 3948-3952.	1.2	120
340	Importance of indium tin oxide surface acido basicity for charge injection into organic materials based light emitting diodes. Journal of Applied Physics, 2000, 87, 7973-7980.	1.1	124
341	GROWTH MODES AND CHARGE INJECTION OF ORGANIC FILMS ON STANDARD AND ULTRAFLAT INDIUM TIN OXIDE. , 2000, , .		0
342	Oxidation study of GaN using x-ray photoemission spectroscopy. Applied Physics Letters, 1999, 75, 2602-2604.	1.5	90

#	Article	IF	CITATIONS
343	Interface analysis of naphthyl-substituted benzidine derivative and tris-8-(hydroxyquinoline) aluminum using ultraviolet and x-ray photoemission spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 3429-3432.	0.9	25
344	Effect of crystalline domain size on the photophysical properties of thin organic molecular films. Physical Review B, 1999, 60, 14683-14687.	1.1	25
345	X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2314-2317.	0.9	17
346	Photoemission study of the interface between phenyl diamine and treated indium–tin–oxide. Applied Physics Letters, 1999, 75, 1357-1359.	1.5	75
347	Morphology and excited state dynamics in thin organic molecular films probed by femtosecond time-resolved photoemission spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2329-2332.	0.9	1
348	A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases. Applied Physics Letters, 1999, 74, 880-882.	1.5	217
349	The effect of disorder on excited state dynamics in organic molecular films. Applied Physics Letters, 1999, 74, 1296-1298.	1.5	7
350	The growth modes of NPB on indium tin oxide. Synthetic Metals, 1999, 102, 910-911.	2.1	10
351	Photoemission study of interfaces in organic light-emitting diodes. Synthetic Metals, 1999, 102, 1014-1015.	2.1	12
352	Photoemission spectroscopy analysis of ZnO:Ga films for display applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1761-1764.	0.9	24
353	Surface Analytical Studies of Interface Formation in Organic Light-Emitting Devices. Accounts of Chemical Research, 1999, 32, 247-255.	7.6	56
354	<title>Interface formation between Al and Ca with tris-(8-hydroxyquinoline) aluminum. , 1999, , .		2
355	Characterization of treated indium tin oxide surface and interface formation between treated ITO with phenyl-diamine. , $1999, , .$		0
356	Current–voltage characteristic of organic light emitting diodes. Applied Physics Letters, 1998, 72, 3038-3040.	1.5	74
357	Photoluminescence quenching of Alq3 by metal deposition: A surface analytical investigation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1838-1841.	0.9	29
358	Synthesis of Highly Phenylated Poly(p-phenylenevinylenes) via a Chlorine Precursor Route. Macromolecules, 1998, 31, 631-636.	2.2	44
359	Trap states of tris-8-(hydroxyquinoline) aluminum and naphthyl-substituted benzidine derivative using thermally stimulated luminescence. Applied Physics Letters, 1998, 73, 1457-1459.	1.5	107
360	Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum. Applied Physics Letters, 1998, 72, 2689-2691.	1.5	163

#	Article	IF	Citations
361	Emission process in bilayer organic light emitting diodes. Applied Physics Letters, 1998, 73, 2254-2256.	1.5	13
362	Femtosecond photoemission study of ultrafast electron dynamics in single-crystal Au(111) films. Physical Review B, 1998, 58, 10948-10952.	1.1	93
363	Phenylated poly(Pâ€phenylene vinylenes) prepared via the chlorine precursor route (CPR). Macromolecular Symposia, 1998, 125, 205-211.	0.4	4
364	Metal induced photoluminescence quenching of a phenylene vinylene oligomer and its recovery. Macromolecular Symposia, 1998, 125, 83-97.	0.4	10
365	Molecular quantum chemical calculations of the formation of interfaces between Al, Ca and Mg with poly(phenylene vinylene) oligomers. Journal Physics D: Applied Physics, 1997, 30, 1421-1426.	1.3	12
366	Reverse surface photovoltaic effects in GaAs surface quantum wells. Journal Physics D: Applied Physics, 1997, 30, 1416-1420.	1.3	1
367	Photogenerated hot electron dynamics at GaAs (100) surfaces. Journal Physics D: Applied Physics, 1997, 30, 1427-1431.	1.3	5
368	Femtosecond photoemission study of electron relaxation in two-dimensional layered electron systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1510-1514.	0.9	4
369	A study of poly(p-phenylenevinylene) and its derivatives using x-ray photoelectron spectroscopy. Journal of Applied Physics, 1997, 82, 4962-4965.	1.1	6
370	Gap-State Induced Photoluminescence Quenching of Phenylene Vinylene Oligomer and Its Recovery by Oxidation. Physical Review Letters, 1997, 78, 3955-3958.	2.9	83
371	Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum. Applied Physics Letters, 1997, 71, 1005-1007.	1.5	55
372	Radiation-induced photoluminescence quenching of phenylene vinylene oligomer thin films. Physical Review B, 1997, 55, 15460-15463.	1.1	6
373	Femtosecond photoemission study of ultrafast electron dynamics on Cu(100). Physical Review B, 1997, 56, 1099-1102.	1.1	73
374	Effects of Al, Ag, and Ca on luminescence of organic materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1745-1749.	0.9	36
375	Electron spectroscopy studies of interface formation between metal electrodes and luminescent organic materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 2574-2578.	0.9	39
376	Finite Size Effects on Electroluminescence of Nanoscale Semiconducting Polymer Heterojunctions. Chemistry of Materials, 1997, 9, 409-412.	3.2	164
377	Interfacial reactions in poly (phenylene vinylene)-metal systems. Synthetic Metals, 1997, 84, 659-660.	2.1	10
378	Halogen Precursor Route to Poly[(2,3-diphenyl-p-phenylene)vinylene] (DP-PPV):Â Synthesis, Photoluminescence, Electroluminescence, and Photoconductivity. Macromolecules, 1997, 30, 6567-6574.	2.2	59

#	Article	IF	CITATIONS
379	Interface formation of metals and poly(p-phenylene vinylene): surface species and band bending. Polymers for Advanced Technologies, 1997, 8, 408-416.	1.6	13
380	Ultrafast electron dynamics in two dimensional layered systems: two-photon photoemission studies of SnS2. Chemical Physics Letters, 1997, 272, 209-218.	1.2	14
381	Schottky barrier formation at the Ca/poly(p-phenylene vinylene) interface and its role in tunneling at the interface. Synthetic Metals, 1996, 78, 247-252.	2.1	25
382	The surface species of poly (p-phenylene vinylene) and their effects on metal interface formation. Synthetic Metals, 1996, 78, 269-275.	2.1	21
383	A layer-wise topographic study of a polymeric light-emitting diode: indium-tin oxide/poly (2,3-diphenyl-p-phenylene vinylene) / Ag. Synthetic Metals, 1996, 79, 103-106.	2.1	8
384	Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied Physics Letters, 1996, 68, 2699-2701.	1.5	576
385	Energy level bending and alignment at the interface between Ca and a phenylene vinylene oligomer. Applied Physics Letters, 1996, 69, 1080-1082.	1.5	60
386	Photo-active and electro-active protein films prepared by reconstitution with metalloporphyrins self-assembled on gold. Journal of Materials Chemistry, 1996, 6, 369.	6.7	62
387	Femtosecond time-resolved photoemission study of hot electron relaxation at the GaAs(100) surface. Chemical Physics, 1996, 205, 91-108.	0.9	50
388	Evidence for the Formation of Unoccupied States in Poly(2,3-Diphenylphenylene Vinylene) Following the Deposition of Metal. Physical Review Letters, 1996, 76, 299-302.	2.9	31
389	Energy Dependence of Electron Lifetime in Graphite Observed with Femtosecond Photoemission Spectroscopy. Physical Review Letters, 1996, 76, 483-486.	2.9	120
390	Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition. Applied Physics Letters, 1996, 69, 1492-1494.	1.5	123
391	Xuet al.Reply:. Physical Review Letters, 1996, 77, 1411-1411.	2.9	4
392	Interface formation of Ca with poly(p-phenylene α,α′-diphenyl vinylene) and poly(p-phenylene α-phenyl) Tj E	TQ <u>q</u> Q 0 0	rgBT_/Overloc
393	X-ray photoemission spectroscopy study of band bending at the interface of metal with poly(p-phenylene vinylene). Surface and Interface Analysis, 1995, 23, 89-98.	0.8	31
394	Xâ€ray photoemission study of the interface formation between calcium and selfâ€assembled alkanethiol monolayers. Applied Physics Letters, 1995, 67, 2621-2623.	1.5	15
395	Photonâ€assisted oxidation of the GaAs(100) surface using water at 90 K. Journal of Applied Physics, 1995, 77, 5411-5417.	1.1	14
396	Band bending modified tunneling at metal/conjugated polymer interfaces. Applied Physics Letters, 1995, 67, 2705-2707.	1.5	53

#	Article	IF	Citations
397	Photoemission spectroscopy study of thin Cr overlayers on NH3/GaAs(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 200-206.	0.9	6
398	A picosecond electron gun for surface analysis. Review of Scientific Instruments, 1995, 66, 1000-1009.	0.6	46
399	Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit. Journal of Chemical Physics, 1995, 102, 8606-8613.	1.2	144
400	An xâ€ray photoemission spectroscopy study of the role of sample preparation on band bending at the interface of Al with poly(pâ€phenylene vinylene). Journal of Applied Physics, 1994, 75, 7526-7530.	1.1	39
401	Time-resolved two-photon photoemission from Cu(100): Energy dependence of electron relaxation. Physical Review B, 1994, 50, 8957-8960.	1.1	173
402	The Surface Species of Poly(p-Phenylene Vinylene) and Their Effects on Calcium Interface Formation. Molecular Crystals and Liquid Crystals, 1994, 256, 71-78.	0.3	9
403	Temperatureâ€dependent xâ€ray photoelectron diffraction of Pb(100): Experimental results and the singleâ€scattering cluster model. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 3106-3110.	0.9	2
404	Growth of a Cr oxide layer on GaAs(100) by oxidation with condensed water. Journal of Applied Physics, 1993, 73, 1781-1787.	1.1	2
405	Interface formation of Ca with poly(pâ€phenylene vinylene). Journal of Applied Physics, 1993, 73, 7894-7899.	1.1	73
406	Cryogenic growth of Al nitride on GaAs(110): X-ray-photoemission spectroscopy and inverse-photoemission spectroscopy. Physical Review B, 1993, 47, 4491-4497.	1.1	7
407	Xâ€ray photoemission spectroscopy studies of cesium and oxygen on GaAs(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 3158-3165.	0.9	9
408	Xâ€ray photoemission investigations of the interface formation of Ca and poly(pâ€phenylene vinylene). Journal of Chemical Physics, 1992, 97, 6991-6993.	1.2	45
409	Medium-energy electron diffraction from Cu(100). Physical Review B, 1992, 46, 1743-1748.	1.1	20
410	Synchrotron radiation photoemission studies on the palladium/compound semiconductor interfaces: valence band studies. Vacuum, 1992, 43, 587-590.	1.6	0
411	Incident-beam effects in electron-stimulated Auger-electron diffraction. Physical Review B, 1991, 43, 9692-9699.	1.1	58
412	Electron density of states of CdTe. Physical Review B, 1991, 43, 4988-4993.	1.1	27
413	Angle-resolved x-ray-photoemission study of the surface disordering of Pb(100). Physical Review B, 1991, 43, 12615-12618.	1.1	14
414	Photonâ€assisted nitridation of GaAs(100) at liquidâ€nitrogen temperature. Applied Physics Letters, 1991, 59, 849-851.	1.5	14

#	Article	IF	Citations
415	Growth of Al nitride layers on GaAs(100) by reaction with condensed ammonia. Journal of Applied Physics, 1991, 70, 2623-2627.	1.1	7
416	Growth of Al oxide layers on GaAs (100) by reaction with condensed molecular oxygen. Journal of Applied Physics, 1990, 67, 7148-7151.	1.1	5
417	Empty-electronic-state evolution for Sc and electron dynamics at the 3p-3dgiant dipole resonance. Physical Review B, 1989, 39, 8162-8168.	1.1	5
418	dstates, exchange splitting, and Mn electronic configuration inCd1â^'xMnxTe. Physical Review B, 1989, 40, 12009-12012.	1.1	38
419	Resonant inverse photoemission ofBi2Ca1+xSr2â^'xCu2O8+yandYBa2Cu3O7â^'x, unoccupied oxygen states, and plasmons. Physical Review B, 1989, 39, 2928-2931.	1.1	61
420	Bremsstrahlung isochromat studies of conduction band states in GaSe. Solid State Communications, 1988, 65, 11-13.	0.9	5
421	Valence bands, oxygen in planes and chains, and surface changes for single crystals ofM2CuO4andMBa2Cu3Ox(M=Pr,Nd,Eu,Gd). Physical Review B, 1988, 38, 4668-4676.	1.1	101
422	Empty electronic states of graphite and the growth of Au and Pd clusters. Physical Review B, 1988, 38, 3037-3044.	1.1	15
423	Bremsstrahlung-isochromat study of the layered compounds InSe,TiSe2,SnSe2,SnS2, andBi2Te3. Physical Review B, 1988, 37, 4196-4200.	1.1	8
424	Disruption, segregation, and passivation for Pd and noble-metal overlayers on YBa2Cu3O6.9. Physical Review B, 1988, 38, 232-239.	1.1	39
425	Electronic structures of the YBa 2Cu 3O7â^'x surface and its modification by sputtering and adatoms of Ti and Cu. Physical Review B, 1988, 38, 6500-6512.	1.1	104
426	Resonant inverse photoemission involving transition-metal3pâ^3dsubshell interactions. Physical Review B, 1988, 38, 12708-12711.	1.1	14
427	Cu-induced surface disruption ofLa1.85Sr0.15CuO4. Physical Review B, 1988, 37, 511-514.	1.1	25
428	Photoemission and inverse photoemission studies of La adatom interactions with YBa2Cu3O6.9. Journal of Applied Physics, 1988, 64, 1296-1300.	1.1	11
429	Pd overlayer growth on InP(110), GaAs(110), and InSb(110): Comparisons of anion surface segregation. Physical Review B, 1988, 38, 10776-10786.	1.1	14
430	Synchrotron-radiation photoemission studies of interface formation between metals and superconductors: Al and In onYBa2Cu3O6.9. Physical Review B, 1988, 37, 3741-3744.	1.1	15
431	Interface formation of semiconductors with high-Tcsuperconductors:Ge/La1.85Sr0.15CuO4. Physical Review B, 1988, 37, 515-518.	1.1	21
432	Yield of photofield emitted electrons from tungsten. Physical Review B, 1987, 35, 8301-8307.	1.1	8

#	Article	IF	CITATIONS
433	Reaction and intermixing at metalâ€superconductor interfaces: Fe/YBa2Cu3O6.9. Applied Physics Letters, 1987, 51, 1032-1034.	1.5	20
434	Band-structure effects in photofield emission. Physical Review B, 1987, 35, 6627-6636.	1.1	10
435	Spectroscopic evidence for passivation of the La1.85Sr0.15CuO4surface with gold. Applied Physics Letters, 1987, 51, 1118-1120.	1.5	30
436	Photofield emission from transition-metal surface states. Physical Review B, 1987, 35, 4284-4290.	1.1	14
437	Reaction and disruption for Fe/La1.85Sr0.15CuO4: Interface formation for high-temperature superconductors. Physical Review B, 1987, 36, 3975-3978.	1.1	28
438	Unoccupied electronic states and surface phenomena for YBa2Cu3O6.9. Physical Review B, 1987, 36, 3899-3902.	1.1	45
439	Inverse photoemission studies of the empty electronic states and surface stability ofLa1.85Sr0.15CuO4. Physical Review B, 1987, 36, 3971-3974.	1.1	58
440	Bremsstrahlung-isochromat studies of conduction-band states in SnS2 and SnSe2. Physical Review B, 1987, 35, 9357-9359.	1.1	17
441	A design innovation for the 127 degrees differential electron energy analyser. Journal of Physics E: Scientific Instruments, 1985, 18, 381-383.	0.7	14
442	Energy-resolved photofield emission from the $W(100)$ surface state. Physical Review B, 1985, 32, 1380-1382.	1.1	12
443	A selfâ€consistent microscopic theory of hydrogen bond melting with application to poly(dG)âpoly(dC). Journal of Chemical Physics, 1984, 80, 6291-6298.	1.2	66
444	A modified self onsistent phonon theory of hydrogen bond melting. Journal of Chemical Physics, 1984, 80, 2242-2243.	1.2	39
445	Effect of MoO3 buffer layer on the electronic structure of Al-BP interface. Journal Physics D: Applied Physics, 0, , .	1.3	1