Marisol Ocampo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281356/publications.pdf

Version: 2024-02-01

430442 476904 1,089 61 18 29 citations h-index g-index papers 62 62 62 761 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Identification of Plasmodium falciparum MSPâ€1 peptides able to bind to human red blood cells. Parasite Immunology, 1996, 18, 515-526.	0.7	132
2	Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues. Angewandte Chemie - International Edition, 2001, 40, 4654-4657.	7.2	72
3	Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine, 2002, 20, 1331-1339.	1.7	56
4	Computational Prediction and Experimental Assessment of Secreted/Surface Proteins from Mycobacterium tuberculosis H37Rv. PLoS Computational Biology, 2010, 6, e1000824.	1.5	45
5	Hepatitis C virus (HCV) E1 and E2 protein regions that specifically bind to HepG2 cells. Journal of Hepatology, 2002, 36, 254-262.	1.8	40
6	Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides, 2002, 23, 13-22.	1.2	37
7	Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides, 2002, 23, 2265-2277.	1.2	31
8	Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinformatics, 2009, 10, 134.	1.2	31
9	Plasmodium falciparum circumsporozoite (CS) protein peptides specifically bind to HepG2 cells. Vaccine, 2001, 19, 4487-4495.	1.7	27
10	Identifying putativeMycobacterium tuberculosisRv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Science, 2005, 14, 2767-2780.	3.1	23
11	Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: Potential TB vaccine candidate antigen. BMC Microbiology, 2010, 10, 109.	1.3	22
12	P. falciparum: merozoite surface protein-8 peptides bind specifically to human erythrocytes. Peptides, 2003, 24, 1015-1023.	1.2	21
13	Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie, 2005, 87, 461-472.	1.3	21
14	Plasmodium vivax: functional analysis of a highly conserved PvRBP-1 protein region. Molecular and Biochemical Parasitology, 2001, 117, 229-234.	0.5	20
15	IdentifyingPlasmodium falciparummerozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Science, 2005, 14, 1778-1786.	3.1	20
16	Peptides of the liver stage antigen-1 (LSA-1) of Plasmodium falciparum bind to human hepatocytes. Peptides, 2003, 24, 647-657.	1.2	18
17	Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochemical and Biophysical Research Communications, 2005, 332, 771-781.	1.0	18
18	Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides, 2005, 26, 1133-1143.	1.2	18

#	Article	IF	Citations
19	Plasmodium falciparum TryThrA antigen synthetic peptides block in vitro merozoite invasion to erythrocytes. Biochemical and Biophysical Research Communications, 2006, 339, 888-896.	1.0	18
20	Mycobacterium tuberculosisRv2536 protein implicated in specific binding to human cell lines. Protein Science, 2005, 14, 2236-2245.	3.1	17
21	The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides, 2011, 32, 1-10.	1.2	17
22	Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathogens and Disease, 2015, 73, .	0.8	17
23	Identification of Plasmodium falciparum reticulocyte binding protein RBP-2 homologue a and b (PfRBP-2-Ha and -Hb) sequences that specifically bind to erythrocytes. Parasitology International, 2004, 53, 77-88.	0.6	16
24	Plasmodium falciparum: red blood cell binding studies using peptides derived from rhoptry-associated protein 2 (RAP2). Biochimie, 2004, 86, 1-6.	1.3	16
25	MAEBL Plasmodium falciparum protein peptides bind specifically to erythrocytes and inhibit in vitro merozoite invasion. Biochemical and Biophysical Research Communications, 2004, 315, 319-329.	1.0	16
26	Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes. Protein Science, 2005, 14, 504-513.	3.1	16
27	Specific Interaction between <i><scp>M</scp>ycobacterium tuberculosis</i> Lipoproteinâ€derived Peptides and Target Cells Inhibits Mycobacterial Entry <i>In Vitro</i> Chemical Biology and Drug Design, 2014, 84, 626-641.	1.5	16
28	Plasmodium falciparum normocyte binding protein (PfNBP-1) peptides bind specifically to human erythrocytes. Peptides, 2003, 24, 1007-1014.	1.2	15
29	Quantifying intracellular <i>Mycobacterium tuberculosis</i> : An essential issue for in vitro assays. MicrobiologyOpen, 2018, 7, e00588.	1.2	15
30	Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum-derived rhoptry-associated protein 1 peptides. Vaccine, 2004, 22, 1054-1062.	1.7	14
31	Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Science, 2005, 14, 464-473.	3.1	14
32	Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion. Peptides, 2006, 27, 1685-1692.	1.2	14
33	Functional, biochemical and 3D studies of <i>Mycobacterium tuberculosis </i> protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology, 2014, 40, 117-145.	2.7	14
34	Human papillomavirus type 16 and 18 L1 protein peptide binding to VERO and HeLa cells inhibits their VLPs binding. International Journal of Cancer, 2003, 107, 416-424.	2.3	13
35	Sporozoite and Liver Stage Antigen Plasmodium falciparum peptides bind specifically to human hepatocytes. Vaccine, 2004, 22, 1150-1156.	1.7	13
36	Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic and Medicinal Chemistry, 2018, 26, 2401-2409.	1.4	13

#	Article	IF	Citations
37	A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro. Memorias Do Instituto Oswaldo Cruz, 2000, 95, 495-501.	0.8	12
38	Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids, 2012, 42, 2067-2077.	1.2	12
39	Mapping the anatomy of a Plasmodium falciparum MSP-1 epitope using pseudopeptide-induced mono- and polyclonal antibodies and CD and NMR conformation analysis. Journal of Structural Biology, 2004, 148, 110-122.	1.3	11
40	Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochemical and Biophysical Research Communications, 2008, 372, 935-940.	1.0	11
41	Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: Potential vaccine candidates?. Vaccine, 2008, 26, 4387-4395.	1.7	10
42	Identification of specific Hep G2 cell binding regions in Plasmodium falciparum sporozoite–threonine–asparagine-rich protein (STARP). Vaccine, 2003, 21, 2404-2411.	1.7	9
43	Liver stage antigen 3 Plasmodium falciparum peptides specifically interacting with HepG2 cells. Journal of Molecular Medicine, 2004, 82, 600-11.	1.7	9
44	Amino terminal peptides from the Plasmodium falciparum EBA-181/JESEBL protein bind specifically to erythrocytes and inhibit in vitro merozoite invasion. Biochimie, 2005, 87, 425-436.	1.3	9
45	Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides, 2012, 38, 208-216.	1.2	9
46	Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates. Biological Chemistry, 2010, 391, 207-217.	1.2	8
47	The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Engineering, Design and Selection, 2012, 25, 235-242.	1.0	8
48	Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. Biochemical and Biophysical Research Communications, 2004, 321, 835-844.	1.0	7
49	Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorganic and Medicinal Chemistry, 2013, 21, 6650-6656.	1.4	6
50	Cellâ€Peptide Specific Interaction Can Inhibit <i>Mycobacterium tuberculosis H37Rv</i> Infection. Journal of Cellular Biochemistry, 2016, 117, 946-958.	1.2	6
51	Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion. Molecular and Cellular Biochemistry, 2017, 430, 149-160.	1.4	6
52	Mycobacterium tuberculosis PE9 protein has high activity binding peptides which inhibit target cell invasion. International Journal of Biological Macromolecules, 2016, 86, 646-655.	3.6	5
53	Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules, 2018, 23, 526.	1.7	5
54	Experimental models used in evaluating anti-tuberculosis vaccines: the latest advances in the field. Expert Review of Vaccines, 2019, 18, 365-377.	2.0	5

#	Article	IF	CITATIONS
55	Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion. Biological Chemistry, 2007, 388, 15-24.	1.2	4
56	Specific Binding Peptides from Rv3632: A Strategy for BlockingMycobacterium tuberculosisEntry to Target Cells?. BioMed Research International, 2019, 2019, 1-13.	0.9	3
57	Antibodies targeting Mycobacterium tuberculosis peptides inhibit mycobacterial entry to infection target cells. International Journal of Biological Macromolecules, 2020, 161, 712-720.	3.6	3
58	P. falciparum pro-histoaspartic protease (proHAP) protein peptides bind specifically to erythrocytes and inhibit the invasion process in vitro. Biological Chemistry, 2005, 386, 361-7.	1.2	2
59	Vaccines – Recent advances and clinical trials. , 0, , .		1
60	Mycobacterium tuberculosis Rv0292 Protein Peptides Could be Included in a Synthetic Anti-tuberculosis Vaccine. International Journal of Peptide Research and Therapeutics, 2021, 27, 2823.	0.9	1
61	The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2022, 23, 6015.	1.8	1