Jong Chul Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2281336/publications.pdf

Version: 2024-02-01

38742 10,950 201 50 citations h-index papers

99 g-index 203 203 203 9334 docs citations times ranked citing authors all docs

33894

#	Article	IF	CITATIONS
1	Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: development, validation, and method comparison. Gastrointestinal Endoscopy, 2022, 95, 258-268.e10.	1.0	16
2	Switchable and Tunable Deep Beamformer Using Adaptive Instance Normalization for Medical Ultrasound. IEEE Transactions on Medical Imaging, 2022, 41, 266-278.	8.9	6
3	Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Medical Image Analysis, 2022, 75, 102299.	11.6	69
4	DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 9931-9943.	13.9	5
5	Convolutional Neural Networks. Mathematics in Industry, 2022, , 113-134.	0.3	2
6	Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study. Journal of the Korean Society of Radiology, 2022, 83, 344.	0.2	1
7	Geometry of Deep Neural Networks. Mathematics in Industry, 2022, , 195-226.	0.3	1
8	Mathematical Foundations of AIM. , 2022, , 37-54.		0
9	Deep Learning in Biological Image and Signal Processing [From the Guest Editors]. IEEE Signal Processing Magazine, 2022, 39, 24-26.	5.6	5
10	Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement: An overview from a signal processing perspective. IEEE Signal Processing Magazine, 2022, 39, 28-44.	5.6	30
11	Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization. Medical Image Analysis, 2022, 79, 102477.	11.6	5
12	Multi-Domain Unpaired Ultrasound Image Artifact Removal Using a Single Convolutional Neural Network. , 2022, , .		2
13	Score-based diffusion models for accelerated MRI. Medical Image Analysis, 2022, 80, 102479.	11.6	68
14	Low-Dose Sparse-View HAADF-STEM-EDX Tomography of Nanocrystals Using Unsupervised Deep Learning. ACS Nano, 2022, 16, 10314-10326.	14.6	5
15	Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy. Nature Communications, 2022, 13, .	12.8	23
16	Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation. Nature Communications, 2022, 13, .	12.8	18
17	Unsupervised Denoising for Satellite Imagery Using Wavelet Directional CycleGAN. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 6823-6839.	6.3	29
18	Continuous Conversion of CT Kernel Using Switchable CycleGAN With AdalN. IEEE Transactions on Medical Imaging, 2021, 40, 3015-3029.	8.9	16

#	Article	IF	CITATIONS
19	Missing Cone Artifact Removal in ODT Using Unsupervised Deep Learning in the Projection Domain. IEEE Transactions on Computational Imaging, 2021, 7, 747-758.	4.4	14
20	AdalN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising. IEEE Transactions on Computational Imaging, 2021, 7, 73-85.	4.4	44
21	Unpaired Training of Deep Learning tMRA for Flexible Spatio-Temporal Resolution. IEEE Transactions on Medical Imaging, 2021, 40, 166-179.	8.9	10
22	Unsupervised CT Metal Artifact Learning Using Attention-Guided β-CycleGAN. IEEE Transactions on Medical Imaging, 2021, 40, 3932-3944.	8.9	33
23	Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation. IEEE Transactions on Medical Imaging, 2021, 40, 3125-3139.	8.9	25
24	Deep learning STEM-EDX tomography of nanocrystals. Nature Machine Intelligence, 2021, 3, 267-274.	16.0	30
25	Deep learning–based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study. European Radiology, 2021, 31, 8755-8764.	4.5	7
26	Unsupervised Deep Learning For Accelerated High Quality Echocardiography., 2021,,.		2
27	Switchable Deep Beamformer For Ultrasound Imaging Using Adain. , 2021, , .		3
28	DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 1508-1518.	8.9	16
29	Variational Formulation of Unsupervised Deep Learning for Ultrasound Image Artifact Removal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2086-2100.	3.0	20
30	Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Medical Image Analysis, 2021, 71, 102047.	11.6	10
31	CycleMorph: Cycle consistent unsupervised deformable image registration. Medical Image Analysis, 2021, 71, 102036.	11.6	102
32	Optical Coherence Tomography of Plaque Erosion. Journal of the American College of Cardiology, 2021, 78, 1266-1274.	2.8	14
33	CycleGAN denoising of extreme low-dose cardiac CT using wavelet-assisted noise disentanglement. Medical Image Analysis, 2021, 74, 102209.	11.6	34
34	Contrast and Resolution Improvement of POCUS Using Self-consistent CycleGAN. Lecture Notes in Computer Science, 2021, , 158-167.	1.3	1
35	Mathematical Foundations of AIM. , 2021, , 1-18.		0
36	Reusability report: Feature disentanglement in generating a three-dimensional structure from a two-dimensional slice with sliceGAN. Nature Machine Intelligence, 2021, 3, 861-863.	16.0	4

#	Article	lF	Citations
37	Cycle-Free CycleGAN Using Invertible Generator for Unsupervised Low-Dose CT Denoising. IEEE Transactions on Computational Imaging, 2021, 7, 1354-1368.	4.4	17
38	Unsupervised Learning for Acoustic Shadowing Artifact Removal in Ultrasound Imaging. , 2021, , .		1
39	Abstract 10310: Deep Learning for a Diagnosis of Plaque Erosion in Patients with Acute Coronary Syndromes. Circulation, 2021, 144, .	1.6	0
40	Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proceedings of the IEEE, 2020, 108, 86-109.	21.3	187
41	Mumford–Shah Loss Functional for Image Segmentation With Deep Learning. IEEE Transactions on Image Processing, 2020, 29, 1856-1866.	9.8	80
42	\${k}\$ -Space Deep Learning for Accelerated MRI. IEEE Transactions on Medical Imaging, 2020, 39, 377-386.	8.9	193
43	Deep Learning Diffuse Optical Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 877-887.	8.9	77
44	Quantitative susceptibility map reconstruction using annihilating filterâ€based lowâ€rank Hankel matrix approach. Magnetic Resonance in Medicine, 2020, 83, 858-871.	3.0	5
45	Reconstruction of multicontrast MR images through deep learning. Medical Physics, 2020, 47, 983-997.	3.0	36
46	Development of digital breast tomosynthesis and diffuse optical tomography fusion imaging for breast cancer detection. Scientific Reports, 2020, 10, 13127.	3.3	20
47	Improving the Reliability of Pharmacokinetic Parameters at Dynamic Contrast-enhanced MRI in Astrocytomas: A Deep Learning Approach. Radiology, 2020, 297, 178-188.	7.3	15
48	CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. IEEE Transactions on Computational Imaging, 2020, 6, 1127-1138.	4.4	31
49	Editorial: Introduction to the Issue on Domain Enriched Learning for Medical Imaging. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1068-1071.	10.8	1
50	Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN. IEEE Transactions on Computational Imaging, 2020, 6, 1285-1296.	4.4	52
51	Optimal Transport Driven CycleGAN for Unsupervised Learning in Inverse Problems. SIAM Journal on Imaging Sciences, 2020, 13, 2281-2306.	2.2	37
52	Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 2020, 2, 737-748.	16.0	233
53	Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 2020, 39, 2688-2700.	8.9	653
54	Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1558-1572.	3.0	79

#	Article	IF	CITATIONS
55	Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis. Frontiers in Neuroscience, 2020, 14, 630.	2.8	65
56	Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal. IEEE Transactions on Medical Imaging, 2020, 39, 3571-3582.	8.9	7
57	Accuracy improvement of quantification information using super-resolution with convolutional neural network for microscopy images. Biomedical Signal Processing and Control, 2020, 58, 101846.	5.7	14
58	Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning. IEEE Signal Processing Magazine, 2020, 37, 54-68.	5.6	37
59	Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nature Machine Intelligence, 2020, 2, 34-42.	16.0	31
60	Computational MRI: Compressive Sensing and Beyond [From the Guest Editors]. IEEE Signal Processing Magazine, 2020, 37, 21-23.	5.6	14
61	Geometric Approaches to Increase the Expressivity of Deep Neural Networks for MR Reconstruction. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1292-1305.	10.8	10
62	Optimal Transport Structure of CycleGAN for Unsupervised Learning for Inverse Problems. , 2020, , .		8
63	Unsupervised Deconvolution Neural Network for High Quality Ultrasound Imaging. , 2020, , .		5
64	Artificial Intelligence in Health Care: Current Applications and Issues. Journal of Korean Medical Science, 2020, 35, e379.	2.5	46
65	Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm. Korean Journal of Radiology, 2020, 21, 356.	3.4	55
66	PyNET-CA: Enhanced PyNET with Channel Attention for End-to-End Mobile Image Signal Processing. Lecture Notes in Computer Science, 2020, , 202-212.	1.3	10
67	AIM 2020 Challenge on Learned Image Signal Processing Pipeline. Lecture Notes in Computer Science, 2020, , 152-170.	1.3	26
68	Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning. IEEE Transactions on Medical Imaging, 2019, 38, 325-336.	8.9	94
69	kâ€ S pace deep learning for referenceâ€free EPI ghost correction. Magnetic Resonance in Medicine, 2019, 82, 2299-2313.	3.0	18
70	BMC Biomedical Engineering: a home for all biomedical engineering research. BMC Biomedical Engineering, 2019, 1 , 1 .	2.6	8
71	Compressed sensing MRI: a review from signal processing perspective. BMC Biomedical Engineering, 2019, 1, 8.	2.6	106
72	Universal Plane-Wave Compounding for High Quality US Imaging Using Deep Learning. , 2019, , .		7

#	Article	IF	CITATIONS
73	CollaGAN: Collaborative GAN for Missing Image Data Imputation. , 2019, , .		88
74	One network to solve all ROIs: Deep learning CT for any ROI using differentiated backprojection. Medical Physics, 2019, 46, e855-e872.	3.0	20
75	Cycleâ€consistent adversarial denoising network for multiphase coronary CT angiography. Medical Physics, 2019, 46, 550-562.	3.0	157
76	Unsupervised Deformable Image Registration Using Cycle-Consistent CNN. Lecture Notes in Computer Science, 2019 , , $166-174$.	1.3	37
77	Deep Learning-Based Universal Beamformer for Ultrasound Imaging. Lecture Notes in Computer Science, 2019, , 619-627.	1.3	12
78	Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer. Lecture Notes in Computer Science, 2019, , 173-180.	1.3	8
79	Deep learning with domain adaptation for accelerated projectionâ€reconstruction MR. Magnetic Resonance in Medicine, 2018, 80, 1189-1205.	3.0	204
80	Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM Journal on Imaging Sciences, 2018, 11, 991-1048.	2.2	243
81	Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Transactions on Medical Imaging, 2018, 37, 1358-1369.	8.9	216
82	Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal. IEEE Transactions on Image Processing, 2018, 27, 1448-1461.	9.8	71
83	Topological sensitivity based far-field detection of elastic inclusions. Results in Physics, 2018, 8, 442-460.	4.1	7
84	Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Transactions on Biomedical Engineering, 2018, 65, 1985-1995.	4.2	212
85	Deep Learning for Accelerated Ultrasound Imaging. , 2018, , .		12
86	A Mathematical Framework for Deep Learning in Elastic Source Imaging. SIAM Journal on Applied Mathematics, 2018, 78, 2791-2818.	1.8	9
87	Improved Time-Resolved MRA Using k-Space Deep Learning. Lecture Notes in Computer Science, 2018, , 47-54.	1.3	0
88	Framelet denoising for low-dose CT using deep learning. , 2018, , .		3
89	Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE Transactions on Medical Imaging, 2018, 37, 1418-1429.	8.9	388
90	Unified Theory for Recovery of Sparse Signals in a General Transform Domain. IEEE Transactions on Information Theory, 2018, 64, 5457-5477.	2.4	2

#	Article	IF	Citations
91	Grid-Free Localization Algorithm Using Low-Rank Hankel Matrix for Super-Resolution Microscopy. IEEE Transactions on Image Processing, 2018, 27, 4771-4786.	9.8	5
92	Two-Dimensional Elastic Scattering Coefficients and Enhancement of Nearly Elastic Cloaking. Journal of Elasticity, 2017, 128, 203-243.	1.9	10
93	A deep convolutional neural network using directional wavelets for lowâ€dose Xâ€ray CT reconstruction. Medical Physics, 2017, 44, e360-e375.	3.0	561
94	Translational motion correction algorithm for truncated cone-beam CT using opposite projections. Journal of X-Ray Science and Technology, 2017, 25, 927-944.	1.0	5
95	A Joint Sparse Recovery Framework for Accurate Reconstruction of Inclusions in Elastic Media. SIAM Journal on Imaging Sciences, 2017, 10, 1104-1138.	2.2	7
96	Deep residual learning for compressed sensing MRI., 2017,,.		122
97	Compressive Sampling Using Annihilating Filter-Based Low-Rank Interpolation. IEEE Transactions on Information Theory, 2017, 63, 777-801.	2.4	57
98	MRI artifact correction using sparse + lowâ€rank decomposition of annihilating filterâ€based hankel matrix. Magnetic Resonance in Medicine, 2017, 78, 327-340.	3.0	36
99	Beyond Born-Rytov limit for super-resolution optical diffraction tomography. Optics Express, 2017, 25, 30445.	3.4	25
100	Acceleration of MR parameter mapping using annihilating filterâ€based low rank hankel matrix (ALOHA). Magnetic Resonance in Medicine, 2016, 76, 1848-1864.	3.0	83
101	Wholeâ€brain perfusion imaging with balanced steadyâ€state free precession arterial spin labeling. NMR in Biomedicine, 2016, 29, 264-274.	2.8	14
102	Sparse and low-rank decomposition of MR artifact images using annihilating filter-based Hankel matrix. , 2016, , .		3
103	Sampling scheme optimization for diffuse optical tomography based on data and image space rankings. Journal of Biomedical Optics, 2016, 21, 106004.	2.6	7
104	Recent progresses of accelerated MRI using annihilating filter-based low-rank interpolation. , 2016, , .		0
105	Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages. Journal of Neuroscience Methods, 2016, 267, 1-13.	2.5	30
106	A General Framework for Compressed Sensing and Parallel MRI Using Annihilating Filter Based Low-Rank Hankel Matrix. IEEE Transactions on Computational Imaging, 2016, 2, 480-495.	4.4	175
107	Sparse-view X-ray spectral CT reconstruction using annihilating filter-based low rank hankel matrix approach. , 2016, , .		7
108	Compressive dynamic aperture B-mode ultrasound imaging using annihilating filter-based low-rank interpolation. , $2016, , .$		9

#	Article	IF	CITATIONS
109	Improved temporal resolution of twist imaging using annihilating filter-based low rank Hankel matrix approach. , $2016, , .$		1
110	Referenceâ€free singleâ€pass EPI <scp>N</scp> yquist ghost correction using annihilating filterâ€based low rank <scp>H</scp> ankel matrix (ALOHA). Magnetic Resonance in Medicine, 2016, 76, 1775-1789.	3.0	61
111	Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis. NeuroImage, 2016, 125, 1032-1045.	4.2	39
112	Reference-free EPI Nyquist ghost correction using annihilating filter-based low rank hankel matrix for K-space interpolation. , 2016 , , .		2
113	Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T. BioMed Research International, 2015, 2015, 1-24.	1.9	4
114	Multiband dynamic compressed sensing. , 2015, , .		1
115	Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach. Proceedings of SPIE, 2015, , .	0.8	4
116	A novel k-space annihilating filter method for unification between compressed sensing and parallel MRI. , 2015 , , .		11
117	Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty. IEEE Transactions on Medical Imaging, 2015, 34, 748-760.	8.9	124
118	Annihilating Filter-Based Low-Rank Hankel Matrix Approach for Image Inpainting. IEEE Transactions on Image Processing, 2015, 24, 3498-3511.	9.8	136
119	Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation. SIAM Journal on Imaging Sciences, 2015, 8, 226-247.	2.2	16
120	A Unified Sparse Recovery and Inference Framework for Functional Diffuse Optical Tomography Using Random Effect Model. IEEE Transactions on Medical Imaging, 2015, 34, 1602-1615.	8.9	4
121	High-speed terahertz reflection three-dimensional imaging using beam steering. Optics Express, 2015, 23, 5027.	3.4	34
122	Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Optics Express, 2015, 23, 16933.	3.4	226
123	Fully iterative scatter corrected digital breast tomosynthesis using GPUâ€based fast Monte Carlo simulation and composition ratio update. Medical Physics, 2015, 42, 5342-5355.	3.0	19
124	Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty. IEEE Transactions on Signal Processing, 2015, 63, 6595-6605.	5.3	12
125	Interior Tomography Using 1D Generalized Total Variation. Part II: Multiscale Implementation. SIAM Journal on Imaging Sciences, 2015, 8, 2452-2486.	2.2	14
126	Patch based low rank structured matrix completion for accelerated scanning microscopy., 2015,,.		4

#	Article	IF	Citations
127	Accurate inversion of absorption and scattering in diffuse optical tomography without iterative Green's function update. , 2014 , , .		0
128	Improved volumetric imaging for DCE-MRI using parallel imaging and dynamic compressed sensing. , 2014, , .		0
129	3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction. Biomedical Optics Express, 2014, 5, 3935.	2.9	35
130	T2 prime mapping from highly undersampled data using compressed sensing with patch based low rank penalty. , 2014, , .		1
131	Statistical analysis of fNIRS data: A comprehensive review. NeuroImage, 2014, 85, 72-91.	4.2	318
132	Motion Adaptive Patch-Based Low-Rank Approach for Compressed Sensing Cardiac Cine MRI. IEEE Transactions on Medical Imaging, 2014, 33, 2069-2085.	8.9	53
133	ECG-gated cardiac CT reconstruction using patch based low rank regularization. , 2014, , .		0
134	Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. NeuroImage, 2014, 101, 351-363.	4.2	58
135	Compressed sensing fMRI using gradient-recalled echo and EPI sequences. NeuroImage, 2014, 92, 312-321.	4.2	38
136	FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Scientific Reports, 2014, 4, 4577.	3.3	125
137	Corrections to "Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing―[Jan 12 278-301]. IEEE Transactions on Information Theory, 2013, 59, 6148-6149.	2.4	2
138	Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Optics Express, 2013, 21, 32269.	3.4	161
139	Motion compensated compressed sensing dynamic MRI with low-rank patch-based residual reconstruction. , 2013, , .		0
140	Low-dose limited view 4D CT reconstruction using patch-based low-rank regularization. , 2013, , .		1
141	A unified statistical framework for material decomposition using multienergy photon counting xâ€ray detectors. Medical Physics, 2013, 40, 091913.	3.0	5
142	Neuroelectromagnetic imaging of correlated sources using a novel subspace penalized sparse learning. , 2013, , .		0
143	Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography. Optics Express, 2013, 21, 26589.	3.4	21
144	Metal artifact reduction in CT by identifying missing data hidden in metals. Journal of X-Ray Science and Technology, 2013, 21, 357-372.	1.0	19

#	Article	IF	Citations
145	Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery. Scientific Reports, 2013, 3, 2075.	3.3	74
146	Neuroelectromagnetic imaging of correlated sources using a novel subspace penalized sparse learning. , 2013, , .		0
147	Group sparse dictionary learning and inference for resting-state fMRI analysis of Alzheimer'S disease. , 2013, , .		10
148	Improving resolution of fluorescent microscopy using speckle illumination and joint sparse recovery, , 2013, , .		0
149	Subspace penalized sparse learning for joint sparse recovery. , 2013, , .		0
150	Terahertz substance imaging by waveform shaping. Optics Express, 2012, 20, 20783.	3.4	5
151	High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation. Optics Express, 2012, 20, 25432.	3.4	52
152	Source localization approach for functional DOT using MUSIC and FDR control. Optics Express, 2012, 20, 6267.	3.4	2
153	Dynamic sparse support tracking with multiple measurement vectors using compressive MUSIC. , 2012, ,		9
154	Iterative scatter correction for digital tomosynthesis using composition ratio update and GPU based Monte Carlo simulation. , 2012, , .		0
155	A statistical framework for material decomposition using multi-energy photon counting x-ray detector., 2012,,.		1
156	Subwavelength silicon honeycomb structure for tailored index in terahertz broadband region. , 2012, , .		0
157	Resting-state fMRI analysis of Alzheimer's disease progress using sparse dictionary learning., 2012,,.		0
158	Compressed sensing reconstruction of statistical parameter map for functional diffuse optical tomography. , 2012, , .		0
159	Compressive subspace fitting for multiple measurement vectors. , 2012, , .		0
160	Improving Noise Robustness in Subspace-Based Joint Sparse Recovery. IEEE Transactions on Signal Processing, 2012, 60, 5799-5809.	5.3	25
161	Enhancement of Terahertz Pulse Emission by Optical Nanoantenna. ACS Nano, 2012, 6, 2026-2031.	14.6	139
162	Lipschitz-Killing curvature based expected Euler characteristics for p-value correction in fNIRS. Journal of Neuroscience Methods, 2012, 204, 61-67.	2.5	37

#	Article	IF	Citations
163	Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing. IEEE Transactions on Information Theory, 2012, 58, 278-301.	2.4	292
164	Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. NeuroImage, 2011, 55, 176-184.	4.2	96
165	Sparse topological data recovery in medical images. , 2011, , .		1
166	Compressive MUSIC with optimized partial support for joint sparse recovery., 2011,,.		6
167	Sparsity driven metal part reconstruction for artifact removal in dental CT. Journal of X-Ray Science and Technology, 2011, 19, 457-475.	1.0	19
168	A Data-Driven Sparse GLM for fMRI Analysis Using Sparse Dictionary Learning With MDL Criterion. IEEE Transactions on Medical Imaging, 2011, 30, 1076-1089.	8.9	149
169	Compressive Diffuse Optical Tomography: Noniterative Exact Reconstruction Using Joint Sparsity. IEEE Transactions on Medical Imaging, 2011, 30, 1129-1142.	8.9	75
170	A data-driven spatially adaptive sparse generalized linear model for functional MRI analysis. , 2011, , .		0
171	Diffuse optical tomography using generalized music algorithm. , 2011, , .		2
172	Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU. Physics in Medicine and Biology, 2011, 56, 4991-5009.	3.0	31
173	Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: What we can learn from video compression techniques. International Journal of Imaging Systems and Technology, 2010, 20, 81-98.	4.1	74
174	Radial kâ€ŧ FOCUSS for highâ€resolution cardiac cine MRI. Magnetic Resonance in Medicine, 2010, 63, 68-78.	3.0	88
175	Fast implementation of fully iterative scatter corrected OSEM for HRRT using GPU. , 2010, , .		0
176	Quantification of CMRO ₂ without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements. Physics in Medicine and Biology, 2010, 55, 3249-3269.	3.0	48
177	Coherent optical computing for T-ray imaging. Optics Letters, 2010, 35, 508.	3.3	12
178	Self-reference quantitative phase microscopy for microfluidic devices. Optics Letters, 2010, 35, 514.	3.3	92
179	Statistical parametric mapping of FMRI data using sparse dictionary learning. , 2010, , .		2
180	A sparse Bayesian learning for highly accelerated dynamic MRI. , 2010, , .		3

#	Article	IF	Citations
181	High Resolution Time Resolved Contrast Enhanced MR Angiography Using k-t FOCUSS. Journal of the Korean Society of Magnetic Resonance in Medicine, 2010, 14, 10.	0.1	0
182	Performance evaluation of accelerated functional MRI acquisition using compressed sensing., 2009,,.		9
183	Ab initio maximum likelihood reconstruction of helical macromolecules using electron microscopy. , 2009, , .		0
184	Single channel 2-D and 3-D blind image deconvolution for circularly symmetric fir blurs. , 2009, , .		0
185	Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics, 2009, 14, 034004.	2.6	241
186	kâ€ŧ FOCUSS: A general compressed sensing framework for high resolution dynamic MRI. Magnetic Resonance in Medicine, 2009, 61, 103-116.	3.0	536
187	Compressed sensing pulse-echo mode terahertz reflectance tomography. Optics Letters, 2009, 34, 3863.	3.3	9
188	Compressed sensing metal artifact removal in dental CT., 2009,,.		4
189	NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neurolmage, 2009, 44, 428-447.	4.2	910
190	High resolution dynamic MRI using motion estimated and compensated compressed sensing. , 2008, , .		1
191	General linear model and inference for near infrared spectroscopy using global confidence region analysis. , 2008, , .		0
192	Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation. , 2008, , .		3
193	Improvedk–tBLAST andk–tSENSE using FOCUSS. Physics in Medicine and Biology, 2007, 52, 3201-3226.	3.0	235
194	Single channel blind image deconvolution from radially symmetric blur kernels. Optics Express, 2007, 15, 3791.	3.4	10
195	Compressed Sensing Shape Estimation of Star-Shaped Objects in Fourier Imaging. IEEE Signal Processing Letters, 2007, 14, 750-753.	3.6	19
196	Projection reconstruction MR imaging using FOCUSS. Magnetic Resonance in Medicine, 2007, 57, 764-775.	3.0	102
197	Asymptotic Global Confidence Regions for 3-D Parametric Shape Estimation in Inverse Problems. IEEE Transactions on Image Processing, 2006, 15, 2904-2919.	9.8	18
198	Cramer-Rao bounds for parametric shape estimation in inverse problems. IEEE Transactions on Image Processing, 2003, 12, 71-84.	9.8	25

#	Article	IF	CITATIONS
199	A Self-Referencing Level-Set Method for Image Reconstruction from Sparse Fourier Samples. International Journal of Computer Vision, 2002, 50, 253-270.	15.6	42
200	Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Transactions on Image Processing, 2001, 10, 909-922.	9.8	71
201	Asymptotic global confidence regions in parametric shape estimation problems. IEEE Transactions on Information Theory, 2000, 46, 1881-1895.	2.4	28