
Juan M Pacheco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccination against foot-and-mouth disease virus confers complete clinical protection in 7 days and partial protection in 4 days: Use in emergency outbreak response. Vaccine, 2005, 23, 5775-5782.	3.8	150
2	A Continuous Bovine Kidney Cell Line Constitutively Expressing Bovine α _V β ₆ Integrin Has Increased Susceptibility to Foot-and-Mouth Disease Virus. Journal of Clinical Microbiology, 2013, 51, 1714-1720.	3.9	123
3	Early events in the pathogenesis of foot-and-mouth disease in cattle after controlled aerosol exposure. Veterinary Journal, 2010, 183, 46-53.	1.7	114
4	Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology, 2005, 337, 205-209.	2.4	112
5	Role of Nonstructural Proteins 3A and 3B in Host Rangeand Pathogenicity of Foot-and-Mouth DiseaseVirus. Journal of Virology, 2003, 77, 13017-13027.	3.4	107
6	African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016, 221, 8-14.	2.2	107
7	Emergence in Asia of Foot-and-Mouth Disease Viruses with Altered Host Range: Characterization of Alterations in the 3A Protein. Journal of Virology, 2001, 75, 1551-1556.	3.4	104
8	Detection of foot-and-mouth disease virus infected cattle using infrared thermography. Veterinary Journal, 2009, 180, 317-324.	1.7	98
9	Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology, 2011, 410, 142-150.	2.4	97
10	The Foot-and-Mouth Disease Carrier State Divergence in Cattle. Journal of Virology, 2016, 90, 6344-6364.	3.4	96
11	Subcellular Distribution of the Foot-and-Mouth Disease Virus 3A Protein in Cells Infected with Viruses Encoding Wild-Type and Bovine-Attenuated Forms of 3A. Virology, 2001, 287, 151-162.	2.4	87
12	A Safe Foot-and-Mouth Disease Vaccine Platform with Two Negative Markers for Differentiating Infected from Vaccinated Animals. Journal of Virology, 2012, 86, 11675-11685.	3.4	68
13	Bovine Type III Interferon Significantly Delays and Reduces the Severity of Foot-and-Mouth Disease in Cattle. Journal of Virology, 2012, 86, 4477-4487.	3.4	67
14	Evaluation of Genetically Engineered Derivatives of a Chinese Strain of Foot-and-Mouth Disease Virus Reveals a Novel Cell-Binding Site Which Functions in Cell Culture and in Animals. Journal of Virology, 2003, 77, 3269-3280.	3.4	66
15	Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression. PLoS ONE, 2015, 10, e0125698.	2.5	64
16	A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle. Virology, 2013, 446, 260-267.	2.4	54
17	Delivery of a foot-and-mouth disease virus empty capsid subunit antigen with nonstructural protein 2B improves protection of swine. Vaccine, 2008, 26, 5689-5699.	3.8	50
18	Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle. PLoS ONE, 2015, 10, e0143666.	2.5	46

Juan M Pacheco

#	Article	IF	CITATIONS
19	Loss of Plasmacytoid Dendritic Cell Function Coincides with Lymphopenia and Viremia During Foot-and-Mouth Disease Virus Infection. Viral Immunology, 2010, 23, 29-41.	1.3	45
20	Direct contact transmission of three different foot-and-mouth disease virus strains in swine demonstrates important strain-specific differences. Veterinary Journal, 2012, 193, 456-463.	1.7	40
21	Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication. PLoS ONE, 2014, 9, e106859.	2.5	40
22	Evaluation of infectivity and transmission of different Asian foot-and-mouth disease viruses in swine. Journal of Veterinary Science, 2010, 11, 133.	1.3	37
23	Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology, 2014, 452-453, 12-22.	2.4	33
24	Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs. Frontiers in Microbiology, 2018, 9, 1891.	3.5	31
25	Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology, 2012, 422, 37-45.	2.4	30
26	The region between the two polyprotein initiation codons of foot-and-mouth disease virus is critical for virulence in cattle. Virology, 2010, 396, 152-159.	2.4	28
27	lgA Antibody Response of Swine to Foot-and-Mouth Disease Virus Infection and Vaccination. Vaccine Journal, 2010, 17, 550-558.	3.1	28
28	Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naÃ ⁻ ve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Veterinary Research, 2016, 12, 205.	1.9	27
29	Procedures for preventing transmission of foot-and-mouth disease virus (O/TAW/97) by people. Veterinary Microbiology, 2004, 103, 143-149.	1.9	25
30	Domain disruptions of individual 3B proteins of foot-and-mouth disease virus do not alter growth in cell culture or virulence in cattle. Virology, 2010, 405, 149-156.	2.4	23
31	Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx. PLoS ONE, 2016, 11, e0162750.	2.5	23
32	Characterization of Cytotoxic T Lymphocyte Function After Foot-and-Mouth Disease Virus Infection and Vaccination. Viral Immunology, 2013, 26, 239-249.	1.3	21
33	Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis. Virology, 2013, 436, 150-161.	2.4	21
34	Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs. Frontiers in Veterinary Science, 2016, 3, 105.	2.2	21
35	Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development. Journal of Virology, 2017, 91, .	3.4	21
36	Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle. Virology Journal, 2017. 14. 89.	3.4	21

Juan M Pacheco

#	Article	IF	CITATIONS
37	Mechanisms of Foot-and-Mouth Disease Virus Tropism Inferred from Differential Tissue Gene Expression. PLoS ONE, 2013, 8, e64119.	2.5	20
38	Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea. PLoS ONE, 2016, 11, e0146445.	2.5	17
39	A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology, 2018, 516, 115-126.	2.4	17
40	Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A. Acta Veterinaria Scandinavica, 2014, 56, 42.	1.6	16
41	Clinical and virological dynamics of a serotype O 2010 South East Asia lineage foot-and-mouth disease virus in sheep using natural and simulated natural inoculation and exposure systems. Veterinary Microbiology, 2015, 178, 50-60.	1.9	15
42	An alternate delivery system improves vaccine performance against foot-and-mouth disease virus (FMDV). Vaccine, 2012, 30, 3106-3111.	3.8	14
43	Characterization of a chimeric foot-and-mouth disease virus bearing a bovine rhinitis B virus leader proteinase. Virology, 2013, 447, 172-180.	2.4	12
44	Duration of protection and humoral immunity induced by an adenovirus-vectored subunit vaccine for foot-and-mouth disease (FMD) in Holstein steers. Vaccine, 2019, 37, 6221-6231.	3.8	11
45	An improved, rapid competitive ELISA using a novel conserved 3B epitope for the detection of serum antibodies to foot-and-mouth disease virus. Journal of Veterinary Diagnostic Investigation, 2018, 30, 699-707.	1.1	10
46	Novel Foot-and-Mouth Disease Vaccine Platform: Formulations for Safe and DIVA-Compatible FMD Vaccines With Improved Potency. Frontiers in Veterinary Science, 2020, 7, 554305.	2.2	10
47	Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology, 2016, 492, 108-117.	2.4	9
48	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. PLoS ONE, 2019, 14, e0227061.	2.5	8
49	Effect of storage conditions on subpopulations of peripheral blood T lymphocytes isolated from naÃ`ve cattle and cattle infected with footâ€andâ€mouth disease virus. Veterinary Clinical Pathology, 2016, 45, 110-115.	0.7	2
50	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
51	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
52	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
53	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		Ο
54	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0

4

#	Article	IF	CITATIONS
55	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0