Kristian Thorup-Kristensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227985/publications.pdf

Version: 2024-02-01

107 papers 4,057 citations

33 h-index 58 g-index

115 all docs

115 docs citations

115 times ranked 3450 citing authors

#	Article	IF	CITATIONS
1	High N relative to C mineralization of clover leaves at low temperatures in two contrasting soils. Geoderma, 2022, 406, 115483.	5.1	4
2	Tracing deep P uptake potential in arable subsoil using radioactive 33P isotope. Plant and Soil, 2022, 472, 91-104.	3.7	7
3	Winter cover crops favor cereal crop in N competition against creeping thistle Cirsium arvense (L.) Scop. Soil and Tillage Research, 2022, 216, 105261.	5.6	1
4	Semifield root phenotyping: Root traits for deep nitrate uptake. Plant, Cell and Environment, 2022, 45, 823-836.	5.7	10
5	Comparing the deep root growth and water uptake of intermediate wheatgrass (Kernza $\hat{A}^{@}$) to alfalfa. Plant and Soil, 2022, 472, 369-390.	3.7	22
6	Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Scientific Reports, 2022, 12, 5952.	3.3	20
7	Root and xylem anatomy varies with root length, root order, soil depth and environment in intermediate wheatgrass (KernzaÂ $^{\circ}$) and alfalfa. Annals of Botany, 2022, 130, 367-382.	2.9	12
8	Dynamics of Deep Water and N Uptake of Oilseed Rape (Brassica napus L.) Under Varied N and Water Supply. Frontiers in Plant Science, 2022, 13, 866288.	3.6	1
9	Root distribution in intercropping systems $\hat{a} \in \hat{a}$ a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 2021, 67, 15-28.	2.6	9
10	Can precrops uplift subsoil nutrients to topsoil?. Plant and Soil, 2021, 463, 329-345.	3.7	18
11	Digging roots is easier with Al. Journal of Experimental Botany, 2021, 72, 4680-4690.	4.8	17
12	Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agriculture, Ecosystems and Environment, 2021, 313, 107392.	5.3	18
13	Dual labelling by 2H and 15N revealed differences in uptake potential by deep roots of chicory. Rhizosphere, 2021, 19, 100368.	3.0	8
14	Calibration of the EU-Rotate_N model with measured C and N mineralization from potential fertilizers and evaluation of its prediction of crop and soil data from a vegetable field trial. European Journal of Agronomy, 2021, 129, 126336.	4.1	3
15	Uptake of subsoil water below 2 m fails to alleviate drought response in deep-rooted Chicory (Cichorium intybus L.). Plant and Soil, 2020, 446, 275-290.	3.7	30
16	The effect of drought and intercropping on chicory nutrient uptake from below 2Âm studied in a multiple tracer setup. Plant and Soil, 2020, 446, 543-561.	3.7	12
17	Genomic prediction of yield and root development in wheat under changing water availability. Plant Methods, 2020, 16, 90.	4.3	25
18	The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth. Plant Genome, 2020, 13, e20049.	2.8	9

#	Article	IF	CITATIONS
19	Core-labelling technique (CLT): a novel combination of the ingrowth-core method and tracer technique for deep root study. Plant Methods, 2020, 16, 84.	4.3	11
20	Exposing Deep Roots: A Rhizobox Laboratory. Trends in Plant Science, 2020, 25, 418-419.	8.8	15
21	Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends in Plant Science, 2020, 25, 406-417.	8.8	127
22	Evaluation of deep root phenotyping techniques in tube rhizotrons. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2019, 69, 62-74.	0.6	4
23	A multispectral camera system for automated minirhizotron image analysis. Plant and Soil, 2019, 441, 657-672.	3.7	23
24	Construction of a large-scale semi-field facility to study genotypic differences in deep root growth and resources acquisition. Plant Methods, 2019, 15, 26.	4.3	38
25	Testing deep placement of an 15N tracer as a method for in situ deep root phenotyping of wheat, barley and ryegrass. Plant Methods, 2019, 15, 148.	4.3	11
26	Size-asymmetric root competition in deep, nutrient-poor soil. Journal of Plant Ecology, 2019, 12, 78-88.	2.3	10
27	Against the wallâ€"Root growth and competition in four perennial winter hardy plant species grown in living walls. Urban Forestry and Urban Greening, 2018, 29, 293-302.	5. 3	11
28	Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures. European Journal of Soil Biology, 2018, 88, 27-35.	3.2	23
29	Genotypic differences in growth, yield and nutrient accumulation of spring wheat cultivars in response to long-term soil fertility regimes. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 126-133.	0.6	1
30	Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility. Frontiers in Plant Science, 2016, 7, 865.	3.6	56
31	Does earlier sowing of winter wheat improve root growth and N uptake?. Field Crops Research, 2016, 196, 10-21.	5.1	39
32	Cultivar differences in spatial root distribution during early growth in soil, and its relation to nutrient uptake - a study of wheat, onion and lettuce. Plant and Soil, 2016, 408, 255-270.	3.7	16
33	Root system-based limits to agricultural productivity and efficiency: the farming systems context. Annals of Botany, 2016, 118, 573-592.	2.9	84
34	The significance of litter loss and root growth on nitrogen efficiency in normal and semi-dwarf winter oilseed rape genotypes. Field Crops Research, 2016, 186, 166-178.	5.1	18
35	Winter wheat cultivars and nitrogen (N) fertilizationâ€"Effects on root growth, N uptake efficiency and N use efficiency. European Journal of Agronomy, 2015, 68, 38-49.	4.1	113
36	Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture, 2015, 14, 2512-2520.	3. 5	41

#	Article	IF	CITATIONS
37	Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. Journal of Plant Ecology, 2015, 8, 380-389.	2.3	37
38	Approaches to Translational Plant Science. Advances in Agronomy, 2015, , 305-335.	5.2	1
39	Effect of Orychophragmus violaceus incorporation on nitrogen uptake in succeeding maize. Plant, Soil and Environment, 2015, 61, 260-265.	2.2	5
40	Effect of root pruning and irrigation regimes on pear tree: growth, yield and yield components. Zahradnictvi (Prague, Czech Republic: 1992), 2014, 41, 34-43.	0.9	13
41	Root interactions between intercropped legumes and non-legumes—a competition study of red clover and red beet at different nitrogen levels. Plant and Soil, 2014, 378, 59-72.	3.7	28
42	Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations. European Journal of Agronomy, 2014, 52, 90-102.	4.1	56
43	Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal Ecology, 2014, 11, 122-131.	1.6	38
44	Molecular diversity of the entomopathogenic fungal Metarhizium community within an agroecosystem. Journal of Invertebrate Pathology, 2014, 123, 6-12.	3.2	60
45	Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?: a simulation study of GA—EA—M interactions. Euphytica, 2014, 199, 97-117.	1.2	24
46	Breeding for nitrogen efficiency: concepts, methods, and case studies. Euphytica, 2014, 199, 1-2.	1.2	11
47	Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Analytical and Bioanalytical Chemistry, 2014, 406, 2885-2897.	3.7	39
48	Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) cultivars. Euphytica, 2014, 199, 233-245.	1.2	29
49	Spatial root distribution of plants growing in vertical media for use in living walls. Plant and Soil, 2014, 380, 231-248.	3.7	16
50	Root growth of perennials in vertical growing media for use in green walls. Scientia Horticulturae, 2014, 166, 31-41.	3.6	22
51	Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 2013, 369, 467-477.	3.7	34
52	Natural regulation of Delia radicum in organic cabbage production. Agriculture, Ecosystems and Environment, 2013, 164, 183-189.	5.3	13
53	Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biology and Technology, 2013, 76, 26-33.	6.0	17
54	Effect of Differential N and S Competition in Inter- and Sole Cropping of <i>Brassica</i> Species and Lettuce on Glucosinolate Concentration. Journal of Agricultural and Food Chemistry, 2012, 60, 6268-6278.	5.2	17

#	Article	IF	Citations
55	Health biomarkers in a rat model after intake of organically grown carrots. Journal of the Science of Food and Agriculture, 2012, 92, 2936-2943.	3.5	9
56	Multiâ€method comparison of carrot quality from a conventional and three organic cropping systems with increasing levels of nutrient recycling. Journal of the Science of Food and Agriculture, 2012, 92, 2855-2869.	3.5	19
57	Spatial variation in root system activity of tomato (Solanum lycopersicum L.) in response to short and long-term waterlogging as determined by 15N uptake. Plant and Soil, 2012, 357, 161-172.	3.7	16
58	Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. European Journal of Agronomy, 2012, 37, 66-82.	4.1	133
59	Green manuring effect of pure and mixed barley $\hat{a} \in \text{``hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy, 2012, 43, 136-146.}$	4.1	68
60	The effect of catch crop species on selenium availability for succeeding crops. Plant and Soil, 2012, 351, 149-160.	3.7	12
61	Plantâ€based fertilizers for organic vegetable production. Journal of Plant Nutrition and Soil Science, 2011, 174, 321-332.	1.9	33
62	Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects of organic and conventional cropping methods on vegetable products. Journal of Proteomics, 2011, 74, 2810-2825.	2.4	28
63	Spatial and temporal oxygen distribution measured with oxygen microsensors in growing media with different levels of compaction. Scientia Horticulturae, 2011, 128, 68-75.	3.6	2
64	Assessment of selenium mineralization and availability from catch crops. Soil Use and Management, 2011, 27, 305-311.	4.9	5
65	Below- and aboveground abundance and distribution of fungal entomopathogens in experimental conventional and organic cropping systems. Biological Control, 2011, 59, 180-186.	3.0	71
66	Modelling diverse root density dynamics and deep nitrogen uptake—A simple approach. Plant and Soil, 2010, 326, 493-510.	3.7	67
67	Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use and Management, 2010, 26, 27-35.	4.9	73
68	Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes. Journal of Plant Ecology, 2010, 3, 191-199.	2.3	43
69	Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?. Plant and Soil, 2009, 322, 101-114.	3.7	186
70	Simulating nitrate retention in soils and the effect of catch crop use and rooting pattern under the climatic conditions of Northern Europe. Soil Use and Management, 2009, 25, 243-254.	4.9	19
71	Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer. Agriculture, Ecosystems and Environment, 2009, 132, 160-172.	5.3	23
72	Root pruning reduces root competition and increases crop growth in a living mulch cropping system. Journal of Plant Interactions, 2008, 3, 211-221.	2.1	26

#	Article	IF	Citations
73	Roots below One-Meter Depth Are Important for Uptake of Nitrate by Annual Crops. , 2008, , 245-258.		1
74	Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops. Soil Use and Management, 2007, 23, 338-347.	4.9	48
75	Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT - Food Science and Technology, 2006, 39, 835-843.	5.2	59
76	Root growth and nitrogen uptake of carrot, early cabbage, onion and lettuce following a range of green manures. Soil Use and Management, 2006, 22, 29-38.	4.9	81
77	Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant and Soil, 2006, 288, 233-248.	3.7	125
78	Catch crops affect nitrogen dynamics in organic farming systems without livestock husbandryâ€"Simulations with the DAISY model. Ecological Modelling, 2006, 191, 538-544.	2.5	18
79	Long-Term Stability and Mineralization Rate Of Compost is Influenced by Timing of Nutrient Application During Composting of Plant Residues. Compost Science and Utilization, 2006, 14, 215-221.	1.2	2
80	An Organic and Environmentally Friendly Growing System for Greenhouse Tomatoes. Biological Agriculture and Horticulture, 2006, 24, 237-256.	1.0	5
81	Mitigation of subsoil recompaction by light traffic and on-land ploughing. Soil and Tillage Research, 2005, 80, 159-170.	5.6	7
82	Delayed nutrient application affects mineralisation rate during composting of plant residues. Bioresource Technology, 2005, 96, 1093-1101.	9.6	21
83	Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biology and Biochemistry, 2005, 37, 1145-1155.	8.8	22
84	Structural differences in wheat (Triticum aestivum), hemp (Cannabis sativa) and Miscanthus (Miscanthus ogiformis) affect the quality and stability of plant based compost. Scientia Horticulturae, 2005, 107, 81-89.	3.6	7
85	Uptake of15N labeled nitrate by root systems of sweet corn, carrot and white cabbage from 0.2–2.5 meters depth. Plant and Soil, 2004, 265, 93-100.	3.7	74
86	Plant availability of catch crop sulfur following spring incorporation. Journal of Plant Nutrition and Soil Science, 2004, 167, 609-615.	1.9	64
87	Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy, 2003, 79, 227-302.	5.2	458
88	Undersowing Legume Crops for Green Manuring of Lettuce. Biological Agriculture and Horticulture, 2003, 21, 399-414.	1.0	6
89	The effect of catch crops on sulphate leaching and availability of S in the succeeding crop on sandy loam soil in Denmark. Agriculture, Ecosystems and Environment, 2002, 90, 247-254.	5.3	28
90	Effects of defoliation on growth of cauliflower. Scientia Horticulturae, 2001, 91, 1-16.	3.6	5

#	Article	IF	Citations
91	Effects of Green Manure Crops on Soil Mineral Nitrogen Available for Organic Production of Onion and White Cabbage in Two Contrasting Years. Biological Agriculture and Horticulture, 2001, 18, 365-384.	1.0	17
92	Title is missing!. Plant and Soil, 2001, 230, 185-195.	3.7	209
93	Title is missing!. Plant and Soil, 2001, 228, 73-82.	3.7	60
94	N-Fixation of Selected Green Manure Plants in an Organic Crop Rotation. Biological Agriculture and Horticulture, 2001, 18, 345-363.	1.0	59
95	Nutritionally Important Chemical Constituents and Yield of Carrot (Daucus carota L.) Roots Grown Organically Using Ten Levels of Green Manure. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2001, 51, 125-136.	0.6	10
96	Comparative Study between Biocrystallization and Chemical Analyses of Carrots (Daucus carotal.) Grown Organically Using Different Levels of Green Manures. Biological Agriculture and Horticulture, 2001, 19, 29-48.	1.0	10
97	Collembola and mites in plots fertilised with different types of green manure. Pedobiologia, 2000, 44, 556-566.	1.2	53
98	Soil Nitrogen Depletion by Vegetable Crops with Variable Root Growth. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1999, 49, 92-97.	0.6	16
99	Vertical and horizontal development of the root system of carrots following green manure. Plant and Soil, 1999, 212, 143-151.	3.7	36
100	Temporal and spatial root development of cauliflower (Brassica oleracea L. var. botrytis L.). Plant and Soil, 1998, 201, 37-47.	3.7	27
101	Title is missing!. Plant and Soil, 1998, 203, 79-89.	3.7	68
102	Root Growth of Green Pea (<i>Pisum sativum</i> L.) Genotypes. Crop Science, 1998, 38, 1445-1451.	1.8	34
103	The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fertilizer Research, 1994, 37, 227-234.	0.5	111
104	An easy pot incubation method for measuring nitrogen mineralization from easily decomposable organic material under well defined conditions. Fertilizer Research, 1994, 38, 239-247.	0.5	25
105	Root Development of Nitrogen Catch Crops and of a Succeeding Crop of Broccoli. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1993, 43, 58-64.	0.6	19
106	The Effect of Nitrogen Catch Crops on the Nitrogen Nutrition of a Succeeding Crop: I. Effects through Mineralization and Pre-emptive Competition. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1993, 43, 74-81.	0.6	38
107	Nitrogen effects of non-legume catch crops. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1993, 156, 55-59.	0.4	20