Jia-Luo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2279698/publications.pdf

Version: 2024-02-01

		94433	138484
58	7,865	37	58
papers	citations	h-index	g-index
59	59	59	9914
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metalâ€Organic Frameworkâ€Based Nanoheater with Photoâ€Triggered Cascade Effects for Onâ€Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2200004.	7.6	7
2	Biomimetic catalysts of iron-based metal–organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing. Dalton Transactions, 2021, 50, 3854-3861.	3.3	20
3	Superparamagnetic iron oxide–gold nanoparticles conjugated with porous coordination cages: Towards controlled drug release for non-invasive neuroregeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102392.	3.3	13
4	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption., 2020, 2, 49-54.		30
5	Enhancing the separation efficiency of a C ₂ H ₂ /C ₂ H ₄ mixture by a chromium metal–organic framework fabricated ⟨i>via post-synthetic metalation. Journal of Materials Chemistry A, 2020, 8, 2083-2089.	10.3	45
6	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	19.5	29
7	Precisely Embedding Active Sites into a Mesoporous Zr-Framework through Linker Installation for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2020, 142, 15020-15026.	13.7	71
8	Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4661-4668.	6.0	26
9	Metal–Organic Frameworks Based on Group 3 and 4 Metals. Advanced Materials, 2020, 32, e2004414.	21.0	69
10	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie, 2020, 132, 9405-9409.	2.0	18
11	Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 26727-26732.	8.0	36
12	Metal oxide decorated porous carbons from controlled calcination of a metal–organic framework. Nanoscale Advances, 2020, 2, 2758-2767.	4.6	10
13	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for in Vitro Cyanide Detection. Angewandte Chemie - International Edition, 2020, 59, 9319-9323.	13.8	104
14	Degradable sugar-based magnetic hybrid nanoparticles for recovery of crude oil from aqueous environments. Polymer Chemistry, 2020, 11, 4895-4903.	3.9	10
15	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	13.7	65
16	Effect of Isomorphic Metal Substitution on the Fenton and Photo-Fenton Degradation of Methylene Blue Using Fe-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 9292-9299.	8.0	113
17	Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13654-13663.	13.7	60
18	Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chemical Science, 2019, 10, 8455-8460.	7.4	55

#	Article	IF	CITATIONS
19	Modulation versus Templating: Fineâ€Tuning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie - International Edition, 2019, 58, 12425-12430.	13.8	48
20	Modulation versus Templating: Fine‶uning of Hierarchally Porous PCNâ€250 Using Fatty Acids To Engineer Guest Adsorption. Angewandte Chemie, 2019, 131, 12555-12560.	2.0	2
21	Hierarchical nickel/phosphorus/nitrogen/carbon composites templated by one metal–organic framework as highly efficient supercapacitor electrode materials. Journal of Materials Chemistry A, 2019, 7, 2875-2883.	10.3	38
22	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	13.7	70
23	A mesoporous NNN-pincer-based metal–organic framework scaffold for the preparation of noble-metal-free catalysts. Chemical Communications, 2019, 55, 2023-2026.	4.1	38
24	Metal-Organic Frameworks: Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production (Adv. Sci. 11/2019). Advanced Science, 2019, 6, 1970064.	11.2	3
25	Porphyrinic Metal–Organic Frameworks Installed with Brønsted Acid Sites for Efficient Tandem Semisynthesis of Artemisinin. ACS Catalysis, 2019, 9, 5111-5118.	11.2	96
26	Temperature-Controlled Evolution of Nanoporous MOF Crystallites into Hierarchically Porous Superstructures. CheM, 2019, 5, 1265-1274.	11.7	99
27	Biological Antagonism Inspired Detoxification: Removal of Toxic Elements by Porous Polymer Networks. ACS Applied Materials & Amp; Interfaces, 2019, 11, 14383-14390.	8.0	18
28	Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chemical Science, 2019, 10, 3529-3534.	7.4	38
29	The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal–organic framework. Chemical Communications, 2019, 55, 12769-12772.	4.1	24
30	Fundus-simulating phantom for calibration of retinal vessel oximetry devices. Applied Optics, 2019, 58, 3877.	1.8	4
31	Formation of a Highly Reactive Cobalt Nanocluster Crystal within a Highly Negatively Charged Porous Coordination Cage. Angewandte Chemie, 2018, 130, 5381-5385.	2.0	55
32	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	12.8	159
33	Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation. CheM, 2018, 4, 555-563.	11.7	116
34	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 2363-2372.	13.7	310
35	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
36	Formation of a Highly Reactive Cobalt Nanocluster Crystal within a Highly Negatively Charged Porous Coordination Cage. Angewandte Chemie - International Edition, 2018, 57, 5283-5287.	13.8	85

#	Article	IF	Citations
37	Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal of the American Chemical Society, 2018, 140, 6383-6390.	13.7	124
38	Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 5725-5730.	13.8	217
39	Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie, 2018, 130, 5827-5832.	2.0	42
40	Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018, 21, 108-121.	14.2	1,167
41	An efficient strategy for improving the luminescent sensing performance of a terbium(<scp>iii</scp>) metal–organic framework towards multiple substances. Chemical Communications, 2018, 54, 13271-13274.	4.1	60
42	Uncovering Two Principles of Multivariate Hierarchical Metal–Organic Framework Synthesis via Retrosynthetic Design. ACS Central Science, 2018, 4, 1719-1726.	11.3	79
43	Enhancing Pore-Environment Complexity Using a Trapezoidal Linker: Toward Stepwise Assembly of Multivariate Quinary Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12328-12332.	13.7	78
44	Design of a portable phantom device to simulate tissue oxygenation and blood perfusion. Applied Optics, 2018, 57, 3938.	1.8	10
45	Stable Metal–Organic Frameworks: Stable Metal–Organic Frameworks: Design, Synthesis, and Applications (Adv. Mater. 37/2018). Advanced Materials, 2018, 30, 1870277.	21.0	55
46	Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity. Chemistry - A European Journal, 2018, 24, 16977-16982.	3.3	16
47	Flexible and Hierarchical Metal–Organic Framework Composites for Highâ€Performance Catalysis. Angewandte Chemie - International Edition, 2018, 57, 8916-8920.	13.8	98
48	Flexible and Hierarchical Metal–Organic Framework Composites for Highâ€Performance Catalysis. Angewandte Chemie, 2018, 130, 9054-9058.	2.0	18
49	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie - International Edition, 2018, 57, 12578-12583.	13.8	70
50	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie, 2018, 130, 12758-12763.	2.0	5
51	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	13.7	135
52	Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews, 2017, 46, 3386-3401.	38.1	1,049
53	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	12.8	326
54	Plasmolysis-Inspired Nanoengineering of Functional Yolk–Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Journal of the American Chemical Society, 2017, 139, 15486-15493.	13.7	187

#	Article	IF	CITATIONS
55	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	13.7	102
56	Uniform Concave Polystyrene-Carbon Core–Shell Nanospheres by a Swelling Induced Buckling Process. Journal of the American Chemical Society, 2015, 137, 9772-9775.	13.7	53
57	An Interface Coassembly in Biliquid Phase: Toward Core–Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. Journal of the American Chemical Society, 2015, 137, 13282-13289.	13.7	239
58	Extraction and characterization of PHB from Acidiphilium cryptum DX1-1. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 938-943.	1.0	10