List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2278888/publications.pdf Version: 2024-02-01

		1172	488
338	79,562	114	276
papers	citations	h-index	g-index
357	357	357	52249
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
2	Inefficient development of syncytiotrophoblasts in the <i>Atp11a</i> -deficient mouse placenta. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200582119.	3.3	10
3	Sensing and clearance of apoptotic cells. Current Opinion in Immunology, 2021, 68, 1-8.	2.4	41
4	Tim4 recognizes carbon nanotubes and mediates phagocytosis leading to granuloma formation. Cell Reports, 2021, 34, 108734.	2.9	16
5	TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nature Communications, 2021, 12, 2237.	5.8	35
6	A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. Journal of Clinical Investigation, 2021, 131, .	3.9	25
7	The tertiary structure of the human Xkr8–Basigin complex that scrambles phospholipids at plasma membranes. Nature Structural and Molecular Biology, 2021, 28, 825-834.	3.6	26
8	Flippase and scramblase for phosphatidylserine exposure. Current Opinion in Immunology, 2020, 62, 31-38.	2.4	92
9	Functional Expression of the P2X7 ATP Receptor Requires Eros. Journal of Immunology, 2020, 204, 559-568.	0.4	13
10	Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM. Cell Reports, 2020, 32, 108208.	2.9	50
11	Infertility Caused by Inefficient Apoptotic Germ Cell Clearance in <i>Xkr8</i> -Deficient Male Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	9
12	Crystal structure of a human plasma membrane phospholipid flippase. Journal of Biological Chemistry, 2020, 295, 10180-10194.	1.6	45
13	Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2907-2912.	3.3	44
14	Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13368-13373.	3.3	63
15	MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. Journal of Biological Chemistry, 2019, 294, 7221-7230.	1.6	48
16	Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2132-2137.	3.3	32
17	Apoptosis and Clearance of Apoptotic Cells. Annual Review of Immunology, 2018, 36, 489-517.	9.5	674
18	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036

SHIGEKATZU NAGATA

#	Article	IF	CITATIONS
19	The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane. Journal of Biological Chemistry, 2018, 293, 2172-2182.	1.6	41
20	Single-molecule analysis of phospholipid scrambling by TMEM16F. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3066-3071.	3.3	68
21	Phospholipid flippases enable precursor B cells to flee engulfment by macrophages. Proceedings of the United States of America, 2018, 115, 12212-12217.	3.3	36
22	Efferocytosis and autoimmune disease. International Immunology, 2018, 30, 551-558.	1.8	48
23	Programmed cell death and the immune system. Nature Reviews Immunology, 2017, 17, 333-340.	10.6	343
24	Characterization of the scrambling domain of the TMEM16 family. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6274-6279.	3.3	65
25	Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8800-8805.	3.3	48
26	Killer enzymes tethered. Nature, 2016, 533, 475-476.	13.7	1
27	Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9509-9514.	3.3	108
28	Osteopontin in Spontaneous Germinal Centers Inhibits Apoptotic Cell Engulfment and Promotes Anti-Nuclear Antibody Production in Lupus-Prone Mice. Journal of Immunology, 2016, 197, 2177-2186.	0.4	27
29	Role of Ca ²⁺ in the Stability and Function of TMEM16F and 16K. Biochemistry, 2016, 55, 3180-3188.	1.2	20
30	A Role of TMEM16E Carrying a Scrambling Domain in Sperm Motility. Molecular and Cellular Biology, 2016, 36, 645-659.	1.1	64
31	Exposure of phosphatidylserine on the cell surface. Cell Death and Differentiation, 2016, 23, 952-961.	5.0	334
32	Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium. Journal of Biological Chemistry, 2016, 291, 762-772.	1.6	105
33	Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. Journal of Clinical Investigation, 2016, 127, 383-401.	3.9	107
34	Clearance of Apoptotic Cells and Pyrenocytes. Current Topics in Developmental Biology, 2015, 114, 267-295.	1.0	20
35	DNA-Mediated Cyclic GMP–AMP Synthase–Dependent and –Independent Regulation of Innate Immune Responses. Journal of Immunology, 2015, 194, 4914-4923.	0.4	45
36	TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12800-12805.	3.3	179

#	Article	IF	CITATIONS
37	An Apoptotic â€~Eat Me' Signal: Phosphatidylserine Exposure. Trends in Cell Biology, 2015, 25, 639-650.	3.6	539
38	Flippases and Scramblases at Plasma Membranes that Regulate Phosphatidylserine Exposure. Blood, 2015, 126, SCI-31-SCI-31.	0.6	1
39	Functional Swapping between Transmembrane Proteins TMEM16A and TMEM16F. Journal of Biological Chemistry, 2014, 289, 7438-7447.	1.6	22
40	Phospholipid Flippase Activities and Substrate Specificities of Human Type IV P-type ATPases Localized to the Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 33543-33556.	1.6	109
41	Flippases and scramblases in the plasma membrane. Cell Cycle, 2014, 13, 2990-2991.	1.3	13
42	Serum milk fat globule epidermal growth factor 8 elevation may subdivide systemic lupus erythematosus into two pathophysiologically distinct subsets. Lupus, 2014, 23, 386-394.	0.8	26
43	Exposure of Phosphatidylserine by Xk-related Protein Family Members during Apoptosis. Journal of Biological Chemistry, 2014, 289, 30257-30267.	1.6	134
44	DNA Degradation and Its Defects. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016394-a016394.	2.3	70
45	Tim4- and MerTK-Mediated Engulfment of Apoptotic Cells by Mouse Resident Peritoneal Macrophages. Molecular and Cellular Biology, 2014, 34, 1512-1520.	1.1	105
46	Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly. Development (Cambridge), 2014, 141, 3388-3398.	1.2	50
47	Phospholipid Scrambling on the Plasma Membrane. Methods in Enzymology, 2014, 544, 381-393.	0.4	20
48	Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 2014, 344, 1164-1168.	6.0	425
49	MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood, 2014, 123, 3963-3971.	0.6	68
50	Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014, 3, e02172.	2.8	86
51	Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells. Science, 2013, 341, 403-406.	6.0	460
52	Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids. Cell Death and Differentiation, 2013, 20, 1230-1240.	5.0	59
53	Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Protein Family Members. Journal of Biological Chemistry, 2013, 288, 13305-13316.	1.6	302
54	Apaf-1- and Caspase-8-independent apoptosis. Cell Death and Differentiation, 2013, 20, 343-352.	5.0	22

#	Article	IF	CITATIONS
55	Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. International Immunology, 2013, 25, 363-372.	1.8	93
56	Biogenesis and Proteolytic Processing of Lysosomal DNase II. PLoS ONE, 2013, 8, e59148.	1.1	21
57	Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. International Immunology, 2012, 24, 551-559.	1.8	57
58	Two-Step Engulfment of Apoptotic Cells. Molecular and Cellular Biology, 2012, 32, 118-125.	1.1	103
59	Apoptotic cells suppress mast cell inflammatory responses via the CD300a immunoreceptor. Journal of Experimental Medicine, 2012, 209, 1493-1503.	4.2	81
60	Platelet Apoptosis and Apoptotic Platelet Clearance by Macrophages in Secondary Dengue Virus Infections. Journal of Infectious Diseases, 2012, 205, 1321-1329.	1.9	75
61	Drosophila EYA Regulates the Immune Response against DNA through an Evolutionarily Conserved Threonine Phosphatase Motif. PLoS ONE, 2012, 7, e42725.	1.1	28
62	Pillars article: lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. 1992. Journal of Immunology, 2012, 189, 5101-4.	0.4	2
63	Autoinflammation by Endogenous DNA. Advances in Immunology, 2011, 110, 139-161.	1.1	24
64	Characterization of the threonine-phosphatase of mouse eyes absent 3. FEBS Letters, 2011, 585, 2714-2719.	1.3	18
65	Constitutive exposure of phosphatidylserine on viable cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19246-19251.	3.3	172
66	Aberrant splicing of the milk fat globuleâ€EGF factor 8 (MFGâ€E8) gene in human systemic lupus erythematosus. European Journal of Immunology, 2010, 40, 1778-1785.	1.6	42
67	Interferonâ€induced TRAILâ€independent cell death in <i>DNase II^{â^'/â^'}</i> embryos. European Journal of Immunology, 2010, 40, 2590-2598.	1.6	7
68	Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis and Rheumatism, 2010, 62, 2963-2972.	6.7	49
69	Calcium-dependent phospholipid scrambling by TMEM16F. Nature, 2010, 468, 834-838.	13.7	802
70	Apaf-1-independent programmed cell death in mouse development. Cell Death and Differentiation, 2010, 17, 931-941.	5.0	61
71	Apoptosis and autoimmune diseases. Annals of the New York Academy of Sciences, 2010, 1209, 10-16.	1.8	84
72	Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19432-19437.	3.3	104

#	Article	IF	CITATIONS
73	Essential Role of p400/mDomino Chromatin-remodeling ATPase in Bone Marrow Hematopoiesis and Cell-cycle Progression. Journal of Biological Chemistry, 2010, 285, 30214-30223.	1.6	46
74	Autoimmunity and the Clearance of Dead Cells. Cell, 2010, 140, 619-630.	13.5	751
75	Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature, 2009, 460, 520-524.	13.7	140
76	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
77	The Many Roles of FAS Receptor Signaling in the Immune System. Immunity, 2009, 30, 180-192.	6.6	800
78	Lactadherin and clearance of platelet-derived microvesicles. Blood, 2009, 113, 1332-1339.	0.6	175
79	Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Inflammation and Regeneration, 2009, 29, 204-208.	1.5	2
80	IFN regulatory factor (IRF) 3/7â€dependent and â€independent gene induction by mammalian DNA that escapes degradation. European Journal of Immunology, 2008, 38, 3150-3158.	1.6	27
81	Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature, 2008, 453, 241-245.	13.7	133
82	Role of lactadherin in the clearance of phosphatidylserineâ€expressing red blood cells. Transfusion, 2008, 48, 2370-2376.	0.8	32
83	Essential role of C/EBPα in G-CSF-induced transcriptional activation and chromatin modification of myeloid-specific genes. Genes To Cells, 2008, 13, 313-327.	0.5	22
84	Chapter Fourteen Nucleases in Programmed Cell Death. Methods in Enzymology, 2008, 442, 271-287.	0.4	30
85	Rheumatoid polyarthritis caused by a defect in DNA degradation. Cytokine and Growth Factor Reviews, 2008, 19, 295-302.	3.2	13
86	Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury. American Journal of Pathology, 2008, 172, 454-469.	1.9	443
87	Spatiotemporal activation of Rac1 for engulfment of apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9198-9203.	3.3	95
88	Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus. Journal of Leukocyte Biology, 2008, 83, 1300-1307.	1.5	91
89	Bridge over troubled water: milk fat globule epidermal growth factor 8 promotes human monocyte-derived macrophage clearance of non-blebbing phosphatidylserine-positive target cells. Cell Death and Differentiation, 2007, 14, 1063-1065.	5.0	25
90	Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450, 435-439.	13.7	985

#	Article	IF	CITATIONS
91	Critical role of the p400/mDomino chromatin-remodeling ATPase in embryonic hematopoiesis. Genes To Cells, 2007, 12, 581-592.	0.5	30
92	Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunological Reviews, 2007, 220, 237-250.	2.8	70
93	Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens. FEBS Journal, 2007, 274, 3055-3064.	2.2	67
94	Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature, 2006, 443, 998-1002.	13.7	414
95	Apoptosis and autoimmune diseases. IUBMB Life, 2006, 58, 358-362.	1.5	16
96	Opposite Effects of Rho Family GTPases on Engulfment of Apoptotic Cells by Macrophages. Journal of Biological Chemistry, 2006, 281, 8836-8842.	1.6	138
97	DNase II and the Chk2 DNA Damage Pathway Form a Genetic Barrier Blocking Replication of Horizontally Transferred DNA. Molecular Cancer Research, 2006, 4, 187-195.	1.5	36
98	MFG-E8 in the retina and retinal pigment epithelium of rat and mouse. Molecular Vision, 2006, 12, 1437-47.	1.1	24
99	DNA DEGRADATION IN DEVELOPMENT AND PROGRAMMED CELL DEATH. Annual Review of Immunology, 2005, 23, 853-875.	9.5	198
100	SEI family of nuclear factors regulates p53-dependent transcriptional activation. Genes To Cells, 2005, 10, 851-860.	0.5	47
101	Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nature Immunology, 2005, 6, 49-56.	7.0	333
102	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation, 2005, 12, 1463-1467.	5.0	618
103	Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature, 2005, 437, 754-758.	13.7	296
104	Differential Localization of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 and CD47 and Its Molecular Mechanisms in Cultured Hippocampal Neurons. Journal of Neuroscience, 2005, 25, 2702-2711.	1.7	47
105	Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proceedings of the United States of America, 2005, 102, 16886-16891.	3.3	121
106	Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. Journal of Experimental Medicine, 2005, 202, 1333-1339.	4.2	254
107	Identification of CCR2, flotillin, and gp49B genes as new G-CSF targets during neutrophilic differentiation. Journal of Leukocyte Biology, 2005, 78, 481-490.	1.5	36
108	MFG-E8-Dependent Clearance of Apoptotic Cells, and Autoimmunity Caused by Its Failure. , 2005, 9,		51

162-172.

#	Article	IF	CITATIONS
109	Mnk2 and Mnk1 Are Essential for Constitutive and Inducible Phosphorylation of Eukaryotic Initiation Factor 4E but Not for Cell Growth or Development. Molecular and Cellular Biology, 2004, 24, 6539-6549.	1.1	444
110	Intraperitoneal Injection of Lipopolysaccharide Induces Dynamic Migration of Gr-1high Polymorphonuclear Neutrophils in the Murine Abdominal Cavity. Vaccine Journal, 2004, 11, 452-457.	2.6	36
111	Expression of Developmental Endothelial Locus-1 in a Subset of Macrophages for Engulfment of Apoptotic Cells. Journal of Immunology, 2004, 172, 3876-3882.	0.4	134
112	Masking of Phosphatidylserine Inhibits Apoptotic Cell Engulfment and Induces Autoantibody Production in Mice. Journal of Experimental Medicine, 2004, 200, 459-467.	4.2	240
113	Autoimmune Disease and Impaired Uptake of Apoptotic Cells in MFG-E8-Deficient Mice. Science, 2004, 304, 1147-1150.	6.0	895
114	SOCS-1 suppresses TNF-Â-induced apoptosis through the regulation of Jak activation. International Immunology, 2004, 16, 991-999.	1.8	46
115	Early work on the function of CD95, an interview with Shige Nagata. Cell Death and Differentiation, 2004, 11, S23-S27.	5.0	7
116	Expression of milk fat globule epidermal growth factor?8 in immature dendritic cells for engulfment of apoptotic cells. European Journal of Immunology, 2004, 34, 1414-1422.	1.6	116
117	Increased cytotoxicity of soluble Fas ligand by fusing isoleucine zipper motif. Biochemical and Biophysical Research Communications, 2004, 322, 197-202.	1.0	54
118	A novel form of the myeloid-specific zinc finger protein (MZF-2). Genes To Cells, 2003, 2, 581-591.	0.5	21
119	A SWI2/SNF2-type ATPase/helicase protein, mDomino, interacts with myeloid zinc finger protein 2A (MZF-2A) to regulate its transcriptional activity. Genes To Cells, 2003, 8, 325-339.	0.5	23
120	Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature, 2003, 424, 1071-1074.	13.7	169
121	Mutually regulated expression of caspase-activated DNase and its inhibitor for apoptotic DNA fragmentation. Cell Death and Differentiation, 2003, 10, 142-143.	5.0	27
122	Degradation of chromosomal DNA during apoptosis. Cell Death and Differentiation, 2003, 10, 108-116.	5.0	392
123	Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nature Immunology, 2003, 4, 138-144.	7.0	212
124	Membrane-anchored CD40 Is Processed by the Tumor Necrosis Factor-α-converting Enzyme. Journal of Biological Chemistry, 2003, 278, 32801-32809.	1.6	117
125	Regulation of Myeloid Zinc Finger Protein 2A Transactivation Activity through Phosphorylation by Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 2003, 278, 2921-2927.	1.6	13
126	Tethering of Apoptotic Cells to Phagocytes through Binding of CD47 to Src Homology 2 Domain-Bearing Protein Tyrosine Phosphatase Substrate-1. Journal of Immunology, 2003, 171, 5718-5726.	0.4	68

#	Article	IF	CITATIONS
127	Co-translational Folding of Caspase-activated DNase with Hsp70, Hsp40, and Inhibitor of Caspase-activated DNase. Journal of Biological Chemistry, 2002, 277, 3364-3370.	1.6	58
128	The evolutionary conservation of the mammalian peroxidase genes. Cytogenetic and Genome Research, 2002, 98, 93-95.	0.6	11
129	Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes and Development, 2002, 16, 2662-2671.	2.7	75
130	Breakdown of Chromosomal DNA. Cornea, 2002, 21, S2-S6.	0.9	9
131	Frequent Fas Gene Mutations in Testicular Germ Cell Tumors. American Journal of Pathology, 2002, 161, 635-641.	1.9	35
132	Increased plasma levels of the soluble form of fas ligand in patients with acute myocardial infarction and unstable angina pectoris. Journal of the American College of Cardiology, 2002, 39, 585-590.	1.2	47
133	Requirement of Fas expression in B cells for tolerance induction. European Journal of Immunology, 2002, 32, 223-230.	1.6	29
134	Mice with Markedly Reduced PACAP (PAC1) Receptor Expression by Targeted Deletion of the Signal Peptide. Journal of Neurochemistry, 2002, 75, 1810-1817.	2.1	35
135	Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene, 2002, 21, 4702-4705.	2.6	76
136	Identification of a factor that links apoptotic cells to phagocytes. Nature, 2002, 417, 182-187.	13.7	1,212
137	Efficient biallelic mutagenesis withCre/loxPâ€mediated interâ€chromosomal recombination. EMBO Reports, 2002, 3, 433-437.	2.0	21
138	Requirement of DNase II for Definitive Erythropoiesis in the Mouse Fetal Liver. Science, 2001, 292, 1546-1549.	6.0	333
139	Enzymatic Active Site of Caspase-Activated DNase (CAD) and Its Inhibition by Inhibitor of CAD. Archives of Biochemistry and Biophysics, 2001, 388, 91-99.	1.4	33
140	Processing of tumor necrosis factor by the membrane-bound TNF-α-converting enzyme, but not its truncated soluble form. FEBS Journal, 2001, 268, 2074-2082.	0.2	50
141	The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. European Journal of Immunology, 2001, 31, 2504-2511.	1.6	82
142	Fas Gene Mutations in Prostatic Intraepithelial Neoplasia and Concurrent Carcinoma: Analysis of Laser Capture Microdissected Specimens. Laboratory Investigation, 2001, 81, 283-288.	1.7	37
143	Inhibitory effect of M50054, a novel inhibitor of apoptosis, on anti-Fas-antibody-induced hepatitis and chemotherapy-induced alopecia. European Journal of Pharmacology, 2001, 433, 37-45.	1.7	29
144	Testicular FasL is expressed by sperm cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3316-3321.	3.3	129

#	Article	IF	CITATIONS
145	The Fused Protein Kinase Regulates Hedgehog-stimulated Transcriptional Activation in Drosophila Schneider 2 Cells. Journal of Biological Chemistry, 2001, 276, 38441-38448.	1.6	31
146	Human and Mouse Fas (APO-1/CD95) Death Receptor Genes Each Contain a p53-responsive Element That Is Activated by p53 Mutants Unable to Induce Apoptosis. Journal of Biological Chemistry, 2000, 275, 3867-3872.	1.6	104
147	Deregulation of the CD95/CD95L system in lymphocytes from patients with primary acute HIV infection. Aids, 2000, 14, 345-355.	1.0	30
148	Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nature Medicine, 2000, 6, 283-289.	15.2	293
149	Steering anti-cancer drugs away from the TRAIL. Nature Medicine, 2000, 6, 502-503.	15.2	55
150	Structure of the heterodimeric complex between CAD domains of CAD and ICAD. Nature Structural Biology, 2000, 7, 658-662.	9.7	60
151	Fas-mediated cholangiopathy in the murine model of graft versus host disease. Hepatology, 2000, 31, 966-974.	3.6	66
152	A Novel Activation Mechanism of Caspase-activated DNase fromDrosophila melanogaster. Journal of Biological Chemistry, 2000, 275, 12978-12986.	1.6	50
153	Significance of Fas antigen-mediated apoptosis in human fulminant hepatic failure. American Journal of Gastroenterology, 2000, 95, 2047-2055.	0.2	96
154	Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha -induced cell death in fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5405-5410.	3.3	179
155	Specific Chaperone-like Activity of Inhibitor of Caspase-activated DNase for Caspase-activated DNase. Journal of Biological Chemistry, 2000, 275, 8091-8096.	1.6	52
156	Identification and Developmental Expression of Inhibitor of Caspase-activated DNase (ICAD) in Drosophila melanogaster. Journal of Biological Chemistry, 2000, 275, 21402-21408.	1.6	43
157	LIGHT, a TNF-Like Molecule, Costimulates T Cell Proliferation and Is Required for Dendritic Cell-Mediated Allogeneic T Cell Response. Journal of Immunology, 2000, 164, 4105-4110.	0.4	355
158	Soluble Fas ligand expression in the ocular fluids of uveitis patients. Current Eye Research, 2000, 20, 54-57.	0.7	21
159	The eosinophil peroxidase gene forms a cluster with the genes for myeloperoxidase and lactoperoxidase on human chromosome 17. Cytogenetic and Genome Research, 2000, 88, 246-248.	0.6	22
160	Necrotic Death Pathway in FAS Receptor Signaling. Journal of Cell Biology, 2000, 151, 1247-1256.	2.3	237
161	Intrathecal Administration of Neutralizing Antibody against Fas Ligand Suppresses the Progression of Experimental Autoimmune Encephalomyelitis. Biochemical and Biophysical Research Communications, 2000, 275, 164-168.	1.0	24
162	Apoptotic DNA Fragmentation. Experimental Cell Research, 2000, 256, 12-18.	1.2	789

#	Article	IF	CITATIONS
163	Structure of the CAD domain of caspase-activated DNase and interaction with the CAD domain of its inhibitor11Edited by P. E. Wright. Journal of Molecular Biology, 2000, 297, 1121-1128.	2.0	34
164	An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes and Development, 2000, 14, 549-558.	2.7	151
165	Therapeutic effect of an anti-Fas ligand mAb on lethal graft-versus-host disease. International Immunology, 1999, 11, 925-931.	1.8	64
166	Functional Differences of Two Forms of the Inhibitor of Caspase-activated DNase, ICAD-L, and ICAD-S. Journal of Biological Chemistry, 1999, 274, 15740-15744.	1.6	91
167	Acute Toxicity of an Anti-Fas Antibody in Mice. Toxicologic Pathology, 1999, 27, 412-420.	0.9	30
168	Biddable death. Nature Cell Biology, 1999, 1, E143-E145.	4.6	35
169	Apoptosis: Cell death defined by caspase activation. Cell Death and Differentiation, 1999, 6, 495-496.	5.0	195
170	Structure and promoter analysis of murine CAD and ICAD genes. Cell Death and Differentiation, 1999, 6, 745-752.	5.0	29
171	Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene, 1999, 18, 4401-4408.	2.6	111
172	Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus. Diabetologia, 1999, 42, 1332-1340.	2.9	137
173	The human caspase-activated DNase gene (hCAD): genomic structure, exonic single-nucleotide polymorphisms, and a highly polymorphic dinucleotide repeat at the hCAD locus. Journal of Human Genetics, 1999, 44, 408-411.	1.1	4
174	Apoptotic nuclear morphological change without DNA fragmentation. Current Biology, 1999, 9, 543-546.	1.8	148
175	Fas Ligand-Induced Apoptosis. Annual Review of Genetics, 1999, 33, 29-55.	3.2	710
176	Genomic Organization and Chromosomal Location of the Mouse Vasoactive Intestinal Polypeptide 1 (VPAC1) Receptor. Genomics, 1999, 58, 90-93.	1.3	21
177	INTERFERON \hat{I}_{\pm} AUGMENTS ACTIVATION-INDUCED T CELL DEATH BY UPREGULATION OF FAS (CD95/APO-1) AND FAS LIGAND EXPRESSION. Cytokine, 1999, 11, 736-743.	1.4	75
178	Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. Journal of Clinical Investigation, 1999, 104, 13-19.	3.9	319
179	Caspase 1-independent IL-1β release and inflammation induced by the apoptosis inducer Fas ligand. Nature Medicine, 1998, 4, 1287-1292.	15.2	365
180	A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391, 43-50.	13.7	2,956

#	Article	IF	CITATIONS
181	Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature, 1998, 391, 96-99.	13.7	1,535
182	Inhibition of Fas-induced apoptosis by Bcl-2. Oncogene, 1998, 17, 2549-2554.	2.6	62
183	Downregulation of Fas ligand by shedding. Nature Medicine, 1998, 4, 31-36.	15.2	642
184	Levels of soluble Fas ligand in myocarditis. American Journal of Cardiology, 1998, 82, 246-248.	0.7	65
185	Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis. Arthritis and Rheumatism, 1998, 41, 657-662.	6.7	100
186	Natural killer cell-derived large granular lymphocyte lymphoma of lung developed in a patient with hypersensitivity to mosquito bites and reactivated Epstein-Barr virus infection. , 1998, 59, 309-315.		29
187	Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: A lesson from the mouse model. Journal of Human Genetics, 1998, 43, 2-8.	1.1	94
188	Fasâ€induced DNA fragmentation and proteolysis of nuclear proteins. Genes To Cells, 1998, 3, 297-306.	0.5	43
189	Abrogation of Fas-Induced Fulminant Hepatic Failure in Mice by Hepatocyte Growth Factor. Biochemical and Biophysical Research Communications, 1998, 244, 683-690.	1.0	193
190	Caspase-independent Cell Killing by Fas-associated Protein with Death Domain. Journal of Cell Biology, 1998, 143, 1353-1360.	2.3	304
191	High Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut, 1998, 43, 48-55.	6.1	98
192	Transition from Caspase-dependent to Caspase-independent Mechanisms at the Onset of Apoptotic Execution. Journal of Cell Biology, 1998, 143, 225-239.	2.3	122
193	Fas/FasL Interaction Is Not Involved in Apoptosis of Activated CD4+ T Cells Upon HIV-1 Infection in Vitro. Journal of Acquired Immune Deficiency Syndromes, 1998, 18, 307-315.	0.3	13
194	Molecular cloning and characterization of human caspase-activated DNase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9123-9128.	3.3	174
195	Fas-induced Apoptosis Internal Medicine, 1998, 37, 179-181.	0.3	46
196	Myeloid-specific transcriptional activation by murine myeloid zinc-finger protein 2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3461-3466.	3.3	45
197	Elevation of the Serum Fas Ligand in Patients With Hemophagocytic Syndrome and Diamond-Blackfan Anemia. Blood, 1998, 91, 2793-2799.	0.6	75
198	No Evidence for Involvement of Mouse Protein-tyrosine Phosphatase-BAS-like Fas-associated Phosphatase-1 in Fas-mediated Apoptosis. Journal of Biological Chemistry, 1997, 272, 30215-30220.	1.6	53

#	Article	IF	CITATIONS
199	Induction of cell death by chimeric L-selectin-Fas receptors. International Immunology, 1997, 9, 627-635.	1.8	10
200	Binding of NF-Y Transcription Factor to One of the Cis-elements in the Myeloperoxidase Gene Promoter That Responds to Granulocyte Colony-stimulating Factor. Journal of Biological Chemistry, 1997, 272, 23216-23223.	1.6	24
201	Evasion of Cytotoxic T Lymphocyte (CTL) Responses by Nef-dependent Induction of Fas Ligand (CD95L) Expression on Simian Immunodeficiency Virus–infected Cells. Journal of Experimental Medicine, 1997, 186, 7-16.	4.2	199
202	Requirement of Fas for the Development of Autoimmune Diabetes in Nonobese Diabetic Mice. Journal of Experimental Medicine, 1997, 186, 613-618.	4.2	227
203	Membrane Fas Ligand Kills Human Peripheral Blood T Lymphocytes, and Soluble Fas Ligand Blocks the Killing. Journal of Experimental Medicine, 1997, 186, 2045-2050.	4.2	477
204	Involvement of STAT3 in the Granulocyte Colony-stimulating Factor-induced Differentiation of Myeloid Cells. Journal of Biological Chemistry, 1997, 272, 25184-25189.	1.6	172
205	ERM (Ezrin/Radixin/Moesin)-based Molecular Mechanism of Microvillar Breakdown at an Early Stage of Apoptosis. Journal of Cell Biology, 1997, 139, 749-758.	2.3	154
206	Fas involvement in human NK cell apoptosis: lack of a requirement for CD16-mediated events. Journal of Leukocyte Biology, 1997, 61, 209-215.	1.5	32
207	Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11951-11956.	3.3	32
208	Requirement for the CD95 Receptor-Ligand Pathway in c-Myc-Induced Apoptosis. Science, 1997, 278, 1305-1309.	6.0	334
209	Apoptosis by Death Factor. Cell, 1997, 88, 355-365.	13.5	4,673
210	Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injury. Journal of Neuroimmunology, 1997, 80, 93-96.	1.1	56
211	Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide Receptor Chimeras Reveal Domains That Determine Specificity of Vasoactive Intestinal Polypeptide Binding and Activation. Molecular Pharmacology, 1997, 52, 128-135.	1.0	43
212	Transforming Growth Factor-β1 Abrogates Fas-Induced Growth Suppression and Apoptosis of Murine Bone Marrow Progenitor Cells. Blood, 1997, 90, 3395-3403.	0.6	49
213	Jak1 Plays an Essential Role for Receptor Phosphorylation and Stat Activation in Response to Granulocyte Colony-Stimulating Factor. Blood, 1997, 90, 597-604.	0.6	134
214	Elevated Serum Level of Fas Ligand Correlates With the Asymptomatic Stage of Human Immunodeficiency Virus Infection. Blood, 1997, 90, 896-898.	0.6	23
215	Essential roles of the Fas ligand in the development of hepatitis. Nature Medicine, 1997, 3, 409-413.	15.2	492
216	Molecular Cloning and Characterization of the Chromosomal Gene for Human Lactoperoxidase. FEBS Journal, 1997, 243, 32-41.	0.2	61

#	Article	IF	CITATIONS
217	Programmed cell death (apoptosis) in cord blood lymphocytes. Journal of Clinical Immunology, 1997, 17, 63-73.	2.0	35
218	Jak1 Plays an Essential Role for Receptor Phosphorylation and Stat Activation in Response to Granulocyte Colony-Stimulating Factor. Blood, 1997, 90, 597-604.	0.6	7
219	Elevated Serum Level of Fas Ligand Correlates With the Asymptomatic Stage of Human Immunodeficiency Virus Infection. Blood, 1997, 90, 896-898.	0.6	9
220	CPP32/Yama/apopain cleaves the catalytic component of DNA-dependent protein kinase in the holoenzyme. FEBS Letters, 1996, 393, 1-6.	1.3	32
221	A Trial to Kill Tumor Cells through Fas (CD95)-Mediated Apoptosisin Vivo. Biochemical and Biophysical Research Communications, 1996, 228, 375-379.	1.0	32
222	A possible involvement of Fas-Fas ligand signaling in the pathogenesis of murine autoimmune gastritis. Gastroenterology, 1996, 111, 959-967.	0.6	59
223	Overexpression of Fas antigen on T cells in advanced HIV-1 infection: differential ligation constantly induces apoptosis. Aids, 1996, 10, 131-141.	1.0	94
224	Effects of myeloid cell growth factors on alkaline phosphatase, myeloperoxidase, defensin and granulocyte colony-stimulating factor receptor mRNA expression in haemopoietic cells of normal individuals and myeloid disorders. British Journal of Haematology, 1996, 92, 9-22.	1.2	16
225	Enhanced and accelerated lymphoproliferation in Fas-null mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2131-2136.	3.3	197
226	Different Apoptotic Pathways Mediated by Fas and the Tumor-Necrosis-Factor Receptor. Cytosolic Phospholipase A2 is not Involved in Fas-Mediated Apoptosis. FEBS Journal, 1996, 236, 533-538.	0.2	46
227	Apoptosis: Telling cells their time is up. Current Biology, 1996, 6, 1241-1243.	1.8	75
228	Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 1996, 371, 567-577.	0.9	202
229	An aggressive nasal lymphoma accompanied by high levels of soluble Fas ligand. British Journal of Haematology, 1996, 94, 379-382.	1.2	66
230	Fasâ€induced apoptosis, and diseases caused by its abnormality. Genes To Cells, 1996, 1, 873-879.	0.5	51
231	Fas ligand in human serum. Nature Medicine, 1996, 2, 317-322.	15.2	685
232	Fas ligand and immune evasion. Nature Medicine, 1996, 2, 1306-1307.	15.2	121
233	Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature, 1996, 380, 723-726.	13.7	1,007
234	Activation mediated by RP105 but not CD40 makes normal B cells susceptible to anti-IgM-induced apoptosis: a role for Fc receptor coligation Journal of Experimental Medicine, 1996, 184, 113-120.	4.2	53

#	Article	IF	CITATIONS
235	Swapping between Fas and Granulocyte Colony-stimulating Factor Receptor. Journal of Biological Chemistry, 1996, 271, 17555-17560.	1.6	20
236	Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death Journal of Experimental Medicine, 1996, 184, 2067-2072.	4.2	267
237	Cross-linking of Fas By Antibodies to a Peculiar Domain of gp120 V3 Loop Can Enhance T Cell Apoptosis in HIV-1–infected Patients. Journal of Experimental Medicine, 1996, 184, 2287-2300.	4.2	26
238	A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection Journal of Experimental Medicine, 1996, 183, 1031-1036.	4.2	191
239	Fas-Mediated Apoptosis. Advances in Experimental Medicine and Biology, 1996, 406, 119-124.	0.8	82
240	Linomide prevents the lethal effect of anti-Fas antibody and reduces Fas-mediated ceramide production in mouse hepatocytes Journal of Clinical Investigation, 1996, 98, 1245-1252.	3.9	27
241	Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. Journal of Immunology, 1996, 157, 2909-15.	0.4	143
242	Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: Four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. Journal of Neurobiology, 1995, 28, 51-69.	3.7	159
243	Down-modulation of CD4+ T helper type 2 and type 0 cells by T helper type 1 cells via Fas/Fasligand interaction. European Journal of Immunology, 1995, 25, 2679-2685.	1.6	40
244	Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nature Genetics, 1995, 11, 294-300.	9.4	383
245	Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature, 1995, 375, 78-81.	13.7	781
246	Fas and Fas ligand: lpr and gld mutations. Trends in Immunology, 1995, 16, 39-43.	7.5	872
247	Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody Journal of Experimental Medicine, 1995, 181, 485-491.	4.2	206
248	Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. International Immunology, 1995, 7, 1949-1956.	1.8	69
249	TCR/CD3 coupling to Fas-based cytotoxicity Journal of Experimental Medicine, 1995, 181, 781-786.	4.2	196
250	Structure of the gene encoding the mouse pituitary adenylate cyclase-activating polypeptide receptor. Gene, 1995, 164, 301-304.	1.0	47
251	The Fas death factor. Science, 1995, 267, 1449-1456.	6.0	3,984
252	Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. , 1995, , 45-51.		0

Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. , 1995, , 45-51. 252

#	Article	IF	CITATIONS
253	Expression of the Fas ligand in cells of T cell lineage. Journal of Immunology, 1995, 154, 3806-13.	0.4	471
254	Expression of Granulocyte Colony-Stimulating Factor and its Receptor at the Fetomaternal Interface in Murine and Human Pregnancy. Growth Factors, 1994, 10, 135-143.	0.5	60
255	Purification and characterization of the Fas-ligand that induces apoptosis Journal of Experimental Medicine, 1994, 179, 873-879.	4.2	522
256	Increased Fas antigen expression in murine retrovirus-induced immunodeficiency syndrome, MAIDS. European Journal of Immunology, 1994, 24, 2446-2451.	1.6	27
257	Lineage determination of CD7+ CD5â^' CD2â^' and CD7+ CD5+ CD2â^' lymphoblasts: Studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3ε, and CD3δ. American Journal of Hematology, 1994, 45, 310-320.	2.0	17
258	Production of human granulocyte colony stimulating factor by various kinds of stromal cells in vitro detected by enzyme immunoassay and in situ hybridization. Stem Cells, 1994, 12, 416-423.	1.4	20
259	Structural analysis of the functional gene and pseudogene encoding the murine granulocyte colony-stimulating-factor receptor. FEBS Journal, 1994, 220, 881-891.	0.2	22
260	Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Philosophical Transactions of the Royal Society B: Biological Sciences, 1994, 345, 281-287.	1.8	75
261	Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science, 1994, 265, 528-530.	6.0	1,506
262	Mutations in the Fas antigen gene in lpr mice. Seminars in Immunology, 1994, 6, 3-8.	2.7	59
263	Identification and Characterization of Parathyroid Hormone/Parathyroid Hormone-related Peptide Receptor in Cultured Astrocytes. Biochemical and Biophysical Research Communications, 1994, 200, 1042-1048.	1.0	29
264	Fas-Mediated Apoptosis in Primary Cultured Mouse Hepatocytes. Experimental Cell Research, 1994, 215, 332-337.	1.2	204
265	No requirement of reactive oxygen intermediates in Fas-mediated apoptosis. FEBS Letters, 1994, 351, 311-313.	1.3	100
266	Generalized lymphoproliferative disease in mice, caused by a point mutation in the fas ligand. Cell, 1994, 76, 969-976.	13.5	1,514
267	BIG-1: A new TAG-1/F3-related member of the immunoglobulin superfamily with neurite outgrowth-promoting activity. Neuron, 1994, 13, 415-426.	3.8	96
268	Human Fas ligand: gene structure, chromosomal location and species specificity. International Immunology, 1994, 6, 1567-1574.	1.8	424
269	An ICAM-related neuronal glycoprotein, telencephalin, with brain segment-specific expression. Neuron, 1994, 12, 541-553.	3.8	117
270	Fas and Fas Ligand: A Death Factor and Its Receptor. Advances in Immunology, 1994, 57, 129-144.	1.1	309

#	Article	IF	CITATIONS
271	Lethal effect of the anti-Fas antibody in mice. Nature, 1993, 364, 806-809.	13.7	1,899
272	Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron, 1993, 11, 333-342.	3.8	254
273	Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family. Cell, 1993, 75, 1169-1178.	13.5	2,478
274	Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell, 1993, 74, 1079-1087.	13.5	280
275	Identification of the product of the murine ST2 gene. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1178, 194-200.	1.9	27
276	Granulocyte Colony-Stimulating Factor Receptor and its Related Receptors. Growth Factors, 1993, 8, 99-107.	0.5	20
277	Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1756-1760.	3.3	503
278	Signal transduction mediated by growth hormone receptor and its chimeric molecules with the granulocyte colony-stimulating factor receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 123-127.	3.3	80
279	The Fas Antigen Gene is the Structural Gene for Murine Lymphoproliferation Mutation (lpr). , 1993, , 132-137.		0
280	Rational Design of Potent Antagonists to the Human Growth Hormone Receptor. Science, 1992, 256, 1677-1680.	6.0	654
281	Constitutive and inducible factors bind to regulatory element 3 in the promoter of the gene encoding mouse granulocyte colony-stimulating factor. Gene, 1992, 121, 371-375.	1.0	3
282	Assignment of the human fas antigen gene (FAS) to 10q24.1. Genomics, 1992, 14, 821-822.	1.3	79
283	RDC1 may not be VIP receptor. Trends in Pharmacological Sciences, 1992, 13, 102-103.	4.0	27
284	Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron, 1992, 8, 811-819.	3.8	738
285	cDNA clones encoding leucine-zipper proteins which interact with G-CSF gene promoter element 1-binding protein. FEBS Letters, 1992, 299, 36-38.	1.3	55
286	Hyperproduction of Human Interferon γ by Rat Cells Maintained in Low-Serum Medium Using the Fibronectin Gene Promoter1. Journal of Biochemistry, 1992, 112, 590-597.	0.9	3
287	Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 1992, 356, 314-317.	13.7	2,835
288	The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. Journal of Immunology, 1992, 148, 1274-9.	0.4	607

#	Article	IF	CITATIONS
289	Three individual regulatory elements of the promoter positively activate the transcription of the murine gene encoding granulocyte colony-stimulating factor. Gene, 1991, 107, 241-246.	1.0	10
290	Granulocyte colony-stimulating factor and its receptor. Progress in Growth Factor Research, 1991, 3, 131-141.	1.7	63
291	Assignment of the human granulocyte colony-stimulating factor receptor gene (CSF3R) to chromosome 1 at region p35–p34.3. Genomics, 1991, 10, 1075-1078.	1.3	46
292	Molecular cloning of cDNA and a chromosomal gene encoding GPE1-BP, a nuclear protein which binds to granulocyte colony-stimulating factor promoter element 1. FEBS Letters, 1991, 282, 95-97.	1.3	37
293	The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 1991, 66, 233-243.	13.5	2,763
294	Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture Journal of Experimental Medicine, 1991, 173, 1267-1279.	4.2	31
295	Constitutive Production of Granulocyte Colony-Stimulating Factor by Hybrids of a SV40-Transformed Mouse Macrophage and a Renal Adenocarcinoma Cell Line. Growth Factors, 1991, 5, 183-189.	0.5	3
296	Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages Molecular and Cellular Biology, 1990, 10, 2002-2011.	1.1	121
297	Three different mRNAs encoding human granulocyte colony-stimulating factor receptor Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8702-8706.	3.3	286
298	Expression of Granulocyte and Granulocyte-Macrophage Colony-Stimulating Factors by Human Non-hematopoietic Tumor Cells. Growth Factors, 1990, 3, 325-331.	0.5	29
299	Vargula hilgendorfii luciferase: a secreted reporter enzyme for monitoring gene expression in mammalian cells. Gene, 1990, 96, 257-262.	1.0	64
300	Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell, 1990, 61, 341-350.	13.5	363
301	pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Research, 1990, 18, 5322-5322.	6.5	1,577
302	Gene structure and function of granulocyte colony-stimulating factor. BioEssays, 1989, 10, 113-117.	1.2	26
303	Synthesis and localization of myeloperoxidase protein in transfected BHK cells. Experimental Cell Research, 1989, 180, 440-450.	1.2	14
304	Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6567-6571.	3.3	122
305	Production of granulocyte colony-stimulating factor by acute myelomonocytic leukemia cells. Leukemia Research, 1988, 12, 745-750.	0.4	12
306	Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1792-1795.	3.3	66

#	Article	IF	CITATIONS
307	Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochemical and Biophysical Research Communications, 1987, 142, 454-460.	1.0	135
308	Human gene coding for granulocyte-colony stimulating factor is assigned to the q21-q22 region of chromosome 17. Somatic Cell and Molecular Genetics, 1987, 13, 679-684.	0.7	30
309	The chromosomal gene structure for murine granulocyte colony-stimulating factor. FEBS Journal, 1987, 165, 7-12.	0.2	52
310	Structure of the two genes coding for polypeptide chain elongation factor lα (EF-lα) froni Saccharomyces cerevisiae. Gene, 1986, 45, 265-273.	1.0	61
311	Molecular cloning and sequence determination of cDNAs for alpha subunits of the guanine nucleotide-binding proteins Gs, Gi, and Go from rat brain Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3776-3780.	3.3	345
312	Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7633-7637.	3.3	186
313	Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature, 1986, 319, 415-418.	13.7	832
314	Two Monoclonal Antibodies Distinguish between Human Recombinant Interferonâ€ <i>α</i> 5s Produced by <i>Escherichia coli</i> and by Mouse Cells. Microbiology and Immunology, 1986, 30, 1271-1279.	0.7	0
315	Uudermethylation of interferon- ^{î3} gene in human T cell lines and normal T lymphocytes. Nucleic Acids Research, 1986, 14, 4421-4436.	6.5	26
316	Structural relationship of human interferon alpha genes and pseudogenes. Journal of Molecular Biology, 1985, 185, 227-260.	2.0	190
317	Constitutive production of human interferons by mouse cells with bovine papillomavirus as a vector Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5086-5090.	3.3	41
318	Molecular cloning and nucleotide sequence of cDNA for rat ornithine carbamoyltransferase precursor Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7412-7416.	3.3	88
319	Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 6192-6196.	3.3	152
320	Chromosomal location of a human alpha interferon gene family Journal of Experimental Medicine, 1982, 155, 1019-1024.	4.2	27
321	Structure and expression of human IFN-α genes. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 299, 7-28.	2.4	85
322	Partial Mapping of Ten Genes of the Human Interferon- α Family. Journal of Interferon Research, 1981, 1, 333-336.	1.2	38
323	Molecular analysis of the human interferon-α gene family. Gene, 1981, 15, 379-394.	1.0	89
324	Target cell specificity of two species of human interferon-alpha produced in Escherichia coli and of hybrid molecules derived from them Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 2848-2852.	3.3	199

#	Article	IF	CITATIONS
325	Comparative antiviral efficiency of leukocyte and bacterially produced human α-interferon in rhesus monkeys. Nature, 1981, 292, 775-776.	13.7	53
326	Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature, 1980, 284, 316-320.	13.7	492
327	Human leukocyte and fibroblast interferons are structurally related. Nature, 1980, 285, 547-549.	13.7	291
328	The structure of one of the eight or more distinct chromosomal genes for human interferon-α. Nature, 1980, 287, 401-408.	13.7	519
329	Effect of interferon-alpha 1 from E. coli on some cell functions. Science, 1980, 209, 1431-1435.	6.0	89
330	At least three human type alpha interferons: structure of alpha 2. Science, 1980, 209, 1343-1347.	6.0	289
331	Comparisons of several biological and physicochemical properties of human leukocyte interferons produced by human leukocytes and by E. coli. Gene, 1980, 11, 181-186.	1.0	46
332	The nucleotide sequence of a cloned human leukocyte Interferon cDNA. Gene, 1980, 10, 1-10.	1.0	173
333	Interaction of Subunits of Polypeptide Chain Elongation Factor 1 from Pig Liver. Journal of Biochemistry, 1978, 83, 423-429.	0.9	16
334	Purification and Properties of Polypeptide Chain Elongation Factor-lα from Pig Liver. Journal of Biochemistry, 1977, 82, 1633-1646.	0.9	45
335	Interaction of the low molecular weight form of elongation factor 1 with guanine nucleotides and aminoacyl-tRNA. Archives of Biochemistry and Biophysics, 1976, 172, 168-177.	1.4	66
336	Exchange of free GTP with EF-1α·GDP complex promoted by a factor EF-1β from pig liver. Biochemical and Biophysical Research Communications, 1976, 71, 933-938.	1.0	32
337	Distribution of the Low Molecular Weight Form of Eukaryotic Elongation Factor 1 in Various Tissues. Journal of Biochemistry, 1976, 80, 73-77.	0.9	17
338	The Purification of Low Molecular Weight Form of Polypeptide Elongation Factor 1 from Pig Liver. Journal of Biological Chemistry, 1974, 249, 5008-5010.	1.6	53