Andrew N J Mckenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2278129/publications.pdf

Version: 2024-02-01

20817 30922 23,622 102 60 102 citations h-index g-index papers 118 118 118 21240 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Viral PB1-F2 and host IFN- \hat{I}^3 guide ILC2 and T cell activity during influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
2	Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Science Immunology, 2022, 7, eabn3286.	11.9	15
3	Targeting TLR4 during vaccination boosts MAdCAM-1 ⁺ lymphoid stromal cell activation and promotes the aged germinal center response. Science Immunology, 2022, 7, eabk0018.	11.9	17
4	An innate IL-25–ILC2–MDSC axis creates a cancer-permissive microenvironment for <i>Apc</i> mutation–driven intestinal tumorigenesis. Science Immunology, 2022, 7, .	11.9	34
5	Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunology, 2021, 14, 26-37.	6.0	9
6	Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival. Cancers, 2021, 13, 559.	3.7	31
7	Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annual Review of Immunology, 2021, 39, 167-198.	21.8	31
8	Mapping Rora expression in resting and activated CD4+ T cells. PLoS ONE, 2021, 16, e0251233.	2.5	29
9	IL-6 effector function of group 2 innate lymphoid cells (ILC2) is NOD2 dependent. Science Immunology, 2021, 6, .	11.9	8
10	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	14.5	97
11	Group 2 Innate Lymphoid Cells Exhibit Tissue-Specific Dynamic Behaviour During Type 2 Immune Responses. Frontiers in Immunology, 2021, 12, 711907.	4.8	9
12	IL-33-ILC2 axis represents a potential adjuvant target to increase the cross-protective efficacy of influenza vaccine. Journal of Virology, 2021, 95, e0059821.	3.4	11
13	SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nature Metabolism, 2021, 3, 1150-1162.	11.9	29
14	RORÎ \pm is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nature Immunology, 2021, 22, 166-178.	14.5	51
15	ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nature Immunology, 2020, 21, 998-1009.	14.5	112
16	Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	29
17	ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. Journal of Allergy and Clinical Immunology, 2020, 145, 1606-1614.e4.	2.9	68
18	OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Cell Death and Differentiation, 2020, 27, 1457-1474.	11.2	45

#	Article	IF	Citations
19	A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. Journal of Experimental Medicine, 2019, 216, 1999-2009.	8.5	101
20	Polychromic Reporter Mice Reveal Unappreciated Innate Lymphoid Cell Progenitor Heterogeneity and Elusive ILC3 Progenitors in Bone Marrow. Immunity, 2019, 51, 104-118.e7.	14.3	94
21	Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. Frontiers in Immunology, 2019, 10, 826.	4.8	25
22	BET Bromodomain Inhibitor iBET151 Impedes Human ILC2 Activation and Prevents Experimental Allergic Lung Inflammation. Frontiers in Immunology, 2019, 10, 678.	4.8	16
23	Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by ILâ€1β. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1920-1933.	5.7	51
24	Innate Lymphoid Cells of the Lung. Annual Review of Physiology, 2019, 81, 429-452.	13.1	40
25	Lack of Type 2 Innate Lymphoid Cells Promotes a Type I-Driven Enhanced Immune Response in Contact Hypersensitivity. Journal of Investigative Dermatology, 2018, 138, 1962-1972.	0.7	31
26	TH2 cell development and function. Nature Reviews Immunology, 2018, 18, 121-133.	22.7	365
27	Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Medicine, 2018, 10, 76.	8.2	67
28	MicroRNA-155 Protects Group 2 Innate Lymphoid Cells From Apoptosis to Promote Type-2 Immunity. Frontiers in Immunology, 2018, 9, 2232.	4.8	23
29	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	28.9	1,467
30	Tissue-Restricted Adaptive Type 2 Immunity Is Orchestrated by Expression of the Costimulatory Molecule OX40L on Group 2 Innate Lymphoid Cells. Immunity, 2018, 48, 1195-1207.e6.	14.3	191
31	Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. Journal of Leukocyte Biology, 2018, 105, 143-150.	3.3	55
32	Text message intervention to reduce frequency of binge drinking among disadvantaged men: the TRAM RCT. Public Health Research, 2018, 6, 1-156.	1.3	7
33	Dysregulation of type 2 innate lymphoid cells and T H 2 cells impairs pollutant-induced allergic airway responses. Journal of Allergy and Clinical Immunology, 2017, 139, 246-257.e4.	2.9	55
34	STAT3 Activation Impairs the Stability of Th9 Cells. Journal of Immunology, 2017, 198, 2302-2309.	0.8	20
35	First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Reports, 2017, 18, 1893-1905.	6.4	200
36	Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications, 2017, 8, 15781.	12.8	84

#	Article	IF	Citations
37	Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nature Communications, 2017, 8, 593.	12.8	175
38	Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nature Medicine, 2017, 23, 938-944.	30.7	223
39	ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. Journal of Experimental Medicine, 2017, 214, 2507-2521.	8.5	109
40	Modifying Alcohol Consumption to Reduce Obesity: A Randomized Controlled Feasibility Study of a Complex Community-based Intervention for Men. Alcohol and Alcoholism, 2017, 52, 677-684.	1.6	11
41	CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Science Immunology, 2017, 2, .	11.9	57
42	Modifying Alcohol Consumption to Reduce Obesity (MACRO): development and feasibility trial of a complex community-based intervention for men. Health Technology Assessment, 2017, 21, 1-150.	2.8	5
43	Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature, 2016, 539, 102-106.	27.8	257
44	The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell, 2016, 166, 1215-1230.e20.	28.9	259
45	Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biology, 2016, 17, 103.	8.8	65
46	Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived phospholipase. Science Translational Medicine, 2016, 8, 325ra18.	12.4	77
47	Group 2 Innate Lymphoid Cells Express Functional NKp30 Receptor Inducing Type 2 Cytokine Production. Journal of Immunology, 2016, 196, 45-54.	0.8	73
48	Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. Journal of Allergy and Clinical Immunology, 2016, 137, 482-491.	2.9	117
49	Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nature Immunology, 2016, 17, 57-64.	14.5	257
50	The helminth T2 RNase ï‰1 promotes metabolic homeostasis in an ILâ€33―and group 2 innate lymphoid cellâ€dependent mechanism. FASEB Journal, 2016, 30, 824-835.	0.5	70
51	Innate lymphoid cells: A new paradigm in immunology. Science, 2015, 348, aaa6566.	12.6	683
52	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	14.5	175
53	An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43, 175-186.	14.3	240
54	IL-25 as a potential therapeutic target in allergic asthma. Immunotherapy, 2015, 7, 607-610.	2.0	9

#	Article	IF	CITATIONS
55	Bcl11b is essential for group 2 innate lymphoid cell development. Journal of Experimental Medicine, 2015, 212, 875-882.	8.5	126
56	Type-2 Innate Lymphoid Cells in Asthma and Allergy. Annals of the American Thoracic Society, 2014, 11, S263-S270.	3.2	105
57	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	12.4	280
58	Type-2 innate lymphoid cells in human allergic disease. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 397-403.	2.3	84
59	Group 2 Innate Lymphoid Cells Are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation. Immunity, 2014, 40, 425-435.	14.3	803
60	Chitin Activates Parallel Immune Modules that Direct Distinct Inflammatory Responses via Innate Lymphoid Type 2 and $\hat{l}^3\hat{l}^2$ T Cells. Immunity, 2014, 40, 414-424.	14.3	221
61	IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 367-372.	7.1	307
62	Innate Lymphoid Cells in Inflammation and Immunity. Immunity, 2014, 41, 366-374.	14.3	322
63	MHCII-Mediated Dialog between Group 2 Innate Lymphoid Cells and CD4+ T Cells Potentiates Type 2 Immunity and Promotes Parasitic Helminth Expulsion. Immunity, 2014, 41, 283-295.	14.3	601
64	Aberrant production of IL-13 by T cells promotes exocrinopathy in Id3 knockout mice. Cytokine, 2014, 69, 226-233.	3.2	17
65	Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis. Cell Reports, 2014, 7, 1130-1142.	6.4	198
66	Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. Journal of Allergy and Clinical Immunology, 2014, 133, 1184-1194.e7.	2.9	433
67	TH9 cells that express the transcription factor PU.1 drive T cell–mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nature Immunology, 2014, 15, 676-686.	14.5	338
68	Interleukin-33-Dependent Innate Lymphoid Cells Mediate Hepatic Fibrosis. Immunity, 2013, 39, 357-371.	14.3	431
69	IL-33 is more potent than IL-25 in provoking IL-13–producing nuocytes (type 2 innate lymphoid cells) and airway contraction. Journal of Allergy and Clinical Immunology, 2013, 132, 933-941.	2.9	331
70	Development and function of group 2 innate lymphoid cells. Current Opinion in Immunology, 2013, 25, 148-155.	5.5	171
71	Cutting Edge: IL-25 Elicits Innate Lymphoid Type 2 and Type II NKT Cells That Regulate Obesity in Mice. Journal of Immunology, 2013, 191, 5349-5353.	0.8	202
72	A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. Journal of Experimental Medicine, 2013, 210, 2939-2950.	8.5	803

#	Article	IF	CITATIONS
73	Innate lymphoid cells â€" how did we miss them?. Nature Reviews Immunology, 2013, 13, 75-87.	22.7	621
74	Innate lymphoid cells â€" a proposal for uniform nomenclature. Nature Reviews Immunology, 2013, 13, 145-149.	22.7	2,054
75	ILâ€33 citrine reporter mice reveal the temporal and spatial expression of ILâ€33 during allergic lung inflammation. European Journal of Immunology, 2013, 43, 488-498.	2.9	204
76	IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax, 2013, 68, 82-90.	5.6	142
77	New Kids on the Block. Chest, 2013, 144, 1681-1686.	0.8	29
78	Direct control of hepatic glucose production by interleukin-13 in mice. Journal of Clinical Investigation, 2013, 123, 261-271.	8.2	116
79	Innate IL-13–producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. Journal of Allergy and Clinical Immunology, 2012, 129, 191-198.e4.	2.9	446
80	Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. Journal of Allergy and Clinical Immunology, 2012, 129, 216-227.e6.	2.9	287
81	Transcription factor RORα is critical for nuocyte development. Nature Immunology, 2012, 13, 229-236.	14.5	530
82	Innate lymphoid cells in the airways. European Journal of Immunology, 2012, 42, 1368-1374.	2.9	16
83	Insights into the initiation of type 2 immune responses. Immunology, 2011, 134, 378-385.	4.4	141
84	Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunology, 2011, 12, 631-638.	14.5	722
85	T _H 9: the latest addition to the expanding repertoire of ILâ€25 targets. Immunology and Cell Biology, 2010, 88, 502-504.	2.3	17
86	Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 2010, 464, 1367-1370.	27.8	1,970
87	A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q– syndrome. Nature Medicine, 2010, 16, 59-66.	30.7	312
88	New insights into 5q- syndrome as a ribosomopathy. Cell Cycle, 2010, 9, 4286-4293.	2.6	40
89	IL-9 Production by Regulatory T Cells Recruits Mast Cells That Are Essential for Regulatory T Cell-Induced Immune-Suppression. Blood, 2010, 116, 2782-2782.	1.4	2
90	ILâ€25: A key requirement for the regulation of typeâ€2 immunity. BioFactors, 2009, 35, 178-182.	5.4	39

#	Article	IF	CITATIONS
91	Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. Journal of Allergy and Clinical Immunology, 2007, 120, 1324-1331.	2.9	342
92	IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. Journal of Clinical Investigation, 2007, 117, 1538-1549.	8.2	859
93	Periostin: A novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. Journal of Allergy and Clinical Immunology, 2006, 118, 98-104.	2.9	585
94	Identification of an interleukin (IL)-25–dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. Journal of Experimental Medicine, 2006, 203, 1105-1116.	8.5	646
95	Decoy Receptors in the Regulation of T Helper Cell Type 2 Responses. Journal of Experimental Medicine, 2003, 197, 675-679.	8.5	28
96	IL-4 Induces Characteristic Th2 Responses Even in the Combined Absence of IL-5, IL-9, and IL-13. Immunity, 2002, 17, 7-17.	14.3	312
97	Disrupting Il13 impairs production of IL-4 specified by the linked allele. Nature Immunology, 2001, 2, 461-466.	14.5	18
98	Critical Role for IL-13 in the Development of Allergen-Induced Airway Hyperreactivity. Journal of Immunology, 2001, 167, 4668-4675.	0.8	382
99	IL-13 Overexpression Predisposes to Anaphylaxis Following Antigen Sensitization. Journal of Immunology, 2001, 166, 2712-2716.	0.8	83
100	Cytokine Cell Biology: A Practical Approach, 3rd Edition. Journal of Cell Science, 2001, 114, 2209-2210.	2.0	0
101	IL-13 Is a Susceptibility Factor for <i>Leishmania major</i> Infection. Journal of Immunology, 2000, 164, 1458-1462.	0.8	138
102	Schistosome Infection of Transgenic Mice Defines Distinct and Contrasting Pathogenic Roles for IL-4 and IL-13: IL-13 Is a Profibrotic Agent. Journal of Immunology, 2000, 164, 2585-2591.	0.8	381