Pablo Tornero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2277390/publications.pdf

Version: 2024-02-01

28 papers 2,083 citations

304743 22 h-index 501196 28 g-index

28 all docs

28 docs citations

28 times ranked

2623 citing authors

#	Article	IF	CITATIONS
1	Gibberellins regulate ovule number through a DELLA–CUC2 complex in <i>Arabidopsis</i> . Plant Journal, 2022, 110, 43-57.	5.7	14
2	On the Way to Ovules: The Hormonal Regulation of Ovule Development. Critical Reviews in Plant Sciences, 2020, 39, 431-456.	5.7	20
3	Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 7059-7072.	4.8	14
4	Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant Journal, 2020, 102, 1026-1041.	5.7	26
5	NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS ONE, 2018, 13, e0209835.	2.5	44
6	\hat{l}^2 -carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS ONE, 2017, 12, e0181820.	2.5	44
7	An Allele of Arabidopsis COI1 with Hypo- and Hypermorphic Phenotypes in Plant Growth, Defence and Fertility. PLoS ONE, 2013, 8, e55115.	2.5	1
8	Specific Missense Alleles of the Arabidopsis Jasmonic Acid Co-Receptor COI1 Regulate Innate Immune Receptor Accumulation and Function. PLoS Genetics, 2012, 8, e1003018.	3 . 5	25
9	<i>Non-Recognition-of-BTH4</i> , an <i>Arabidopsis</i> Mediator Subunit Homolog, Is Necessary for Development and Response to Salicylic Acid. Plant Cell, 2012, 24, 4220-4235.	6.6	99
10	The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate. BMC Plant Biology, 2012, 12, 199.	3.6	28
11	Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta, 2011, 234, 671-684.	3.2	14
12	The <i>Pseudomonas syringae</i> effector protein HopZ1a suppresses effectorâ€triggered immunity. New Phytologist, 2010, 187, 1018-1033.	7.3	52
13	Structureâ€function analysis of <i>npr1</i> alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant, Cell and Environment, 2010, 33, 1911-1922.	5.7	67
14	Resistance and biomass in Arabidopsis: a new model for Salicylic Acid perception. Plant Biotechnology Journal, 2010, 8, 126-141.	8.3	47
15	Specific <i>Arabidopsis</i> HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9556-9563.	7.1	95
16	Identification of new type III effectors and analysis of the plant response by competitive index. Molecular Plant Pathology, 2009, 10, 69-80.	4.2	39
17	Molecular analysis of menadioneâ€induced resistance against biotic stress in Arabidopsis. Plant Biotechnology Journal, 2009, 7, 744-762.	8.3	31
18	Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO Journal, 2003, 22, 5679-5689.	7.8	365

#	Article	IF	CITATION
19	RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell, 2002, 14, 1005-1015.	6.6	218
20	Large-Scale Structure –Function Analysis of the Arabidopsis RPM1 Disease Resistance Protein. Plant Cell, 2002, 14, 435-450.	6.6	141
21	NHL25 and NHL3, Two NDR1/HIN1-Like Genes in Arabidopsis thaliana with Potential Role(s) in Plant Defense. Molecular Plant-Microbe Interactions, 2002, 15, 608-616.	2.6	72
22	A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant Journal, 2002, 28, 475-481.	5.7	127
23	A tomato homeobox gene (HD-Zip) is involved in limiting the spread of programmed cell death. Plant Journal, 1999, 20, 591-600.	5.7	49
24	Identification of a New Pathogen-induced Member of the Subtilisin-like Processing Protease Family from Plants. Journal of Biological Chemistry, 1997, 272, 14412-14419.	3.4	127
25	Two PR-1 Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 1997, 10, 624-634.	2.6	133
26	Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant Journal, 1996, 10, 315-330.	5.7	95
27	Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development. Plant Journal, 1996, 9, 639-648.	5.7	45
28	A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Molecular Genetics and Genomics, 1994, 243, 47-53.	2.4	51