
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275399/publications.pdf Version: 2024-02-01

IS SELVED

#	Article	IF	CITATIONS
1	Soil Moisture Measurement for Ecological and Hydrological Watershedâ€Scale Observatories: A Review. Vadose Zone Journal, 2008, 7, 358-389.	2.2	811
2	Distributed fiber-optic temperature sensing for hydrologic systems. Water Resources Research, 2006, 42, .	4.2	472
3	Environmental temperature sensing using Raman spectra DTS fiberâ€optic methods. Water Resources Research, 2009, 45, .	4.2	293
4	Characterization of Miller‧imilar Silica Sands for Laboratory Hydrologic Studies. Soil Science Society of America Journal, 1996, 60, 1331-1339.	2.2	249
5	Homogenization of the terrestrial water cycle. Nature Geoscience, 2020, 13, 656-658.	12.9	242
6	Fiber optics opens window on stream dynamics. Geophysical Research Letters, 2006, 33, .	4.0	227
7	Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors, 2011, 11, 10859-10879.	3.8	205
8	A distributed stream temperature model using high resolution temperature observations. Hydrology and Earth System Sciences, 2007, 11, 1469-1480.	4.9	184
9	Feasibility of soil moisture monitoring with heated fiber optics. Water Resources Research, 2010, 46, .	4.2	173
10	Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors, 2012, 12, 5471-5485.	3.8	167
11	Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE, 2018, 13, e0203256.	2.5	155
12	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	2.6	151
13	Fingered flow in two dimensions: 2. Predicting finger moisture profile. Water Resources Research, 1992, 28, 2523-2528.	4.2	147
14	On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resources Research, 2006, 42, .	4.2	136
15	A new method for quantification of liquid saturation in 2D translucent porous media systems using light transmission. Advances in Water Resources, 2001, 24, 651-666.	3.8	121
16	Nitrate Leaching under a Cereal Rye Cover Crop. Journal of Environmental Quality, 1997, 26, 181-188.	2.0	114
17	The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research, 2013, 49, 5099-5116.	4.2	114
18	Information, artifacts, and noise in dQ/dtâ^'Q recession analysis. Advances in Water Resources, 2006, 29, 154-160.	3.8	112

#	Article	IF	CITATIONS
19	Wetting Front Instability in Homogeneous Sandy Soils under Continuous Infiltration. Soil Science Society of America Journal, 1992, 56, 1346-1350.	2.2	109
20	Fiberglass Wicks for Sampling of Water and Solutes in the Vadose Zone. Soil Science Society of America Journal, 1992, 56, 701-707.	2.2	106
21	A Simple Equation for Predicting Preferential Flow Solute Concentrations. Journal of Environmental Quality, 1994, 23, 1058-1064.	2.0	106
22	The Transâ€African Hydroâ€Meteorological Observatory (<scp>TAHMO</scp>). Wiley Interdisciplinary Reviews: Water, 2014, 1, 341-348.	6.5	102
23	Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation. Water Resources Research, 1997, 33, 2687-2696.	4.2	96
24	Validation of IMERG Precipitation in Africa. Journal of Hydrometeorology, 2017, 18, 2817-2825.	1.9	95
25	Funneled flow mechanisms in a sloping layered soil: Laboratory investigation. Water Resources Research, 2000, 36, 841-849.	4.2	92
26	Distributed <scp>T</scp> emperature <scp>S</scp> ensing as a downhole tool in hydrogeology. Water Resources Research, 2016, 52, 9259-9273.	4.2	91
27	Fingered flow in two dimensions: 1. Measurement of matric potential. Water Resources Research, 1992, 28, 2513-2521.	4.2	89
28	High-Resolution Fibre-Optic Temperature Sensing: A New Tool to Study the Two-Dimensional Structure of Atmospheric Surface-Layer Flow. Boundary-Layer Meteorology, 2012, 142, 177-192.	2.3	79
29	Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Advances in Water Resources, 2002, 25, 477-495.	3.8	76
30	Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors. Journal of Glaciology, 2008, 54, 673-679.	2.2	75
31	The Local Geometry of Gas Injection into Saturated Homogeneous Porous Media. Transport in Porous Media, 2007, 68, 107-127.	2.6	69
32	Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with Pearl millet in Senegal, West Africa. Journal of Arid Environments, 2006, 67, 436-455.	2.4	68
33	Stream Temperature Response to Three Riparian Vegetation Scenarios by Use of a Distributed Temperature Validated Model. Environmental Science & Technology, 2010, 44, 2072-2078.	10.0	65
34	Mapping variability of soil water content and flux across 1–1000 m scales using the <scp>A</scp> ctively <scp>H</scp> eated <scp>F</scp> iber <scp>O</scp> ptic method. Water Resources Research, 2014, 50, 7302-7317.	4.2	65
35	Noninvasive Time Domain Reflectometry Moisture Measurement Probe. Soil Science Society of America Journal, 1993, 57, 934-936.	2.2	62
36	Drainage of a horizontal Boussinesq aquifer with a power law hydraulic conductivity profile. Water Resources Research, 2005, 41, .	4.2	62

#	Article	lF	CITATIONS
37	Unsaturated Hydraulic Conductivities of Fiberglass Wicks and Designing Capillary Wick Poreâ€Water Samplers. Soil Science Society of America Journal, 1994, 58, 721-729.	2.2	59
38	Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resources Research, 2014, 50, 3706-3713.	4.2	59
39	Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation. Water Resources Research, 2009, 45, .	4.2	58
40	Highâ€resolution wind speed measurements using actively heated fiber optics. Geophysical Research Letters, 2015, 42, 10,064.	4.0	57
41	A simple accurate method to predict time of ponding under variable intensity rainfall. Water Resources Research, 2007, 43, .	4.2	56
42	Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddyâ€covariance measurements. Geophysical Research Letters, 2017, 44, 4287-4295.	4.0	54
43	Multifluid flow in bedded porous media: laboratory experiments and numerical simulations. Advances in Water Resources, 1998, 22, 169-183.	3.8	52
44	Coupled Microbial and Transport Processes in Soils. Vadose Zone Journal, 2004, 3, 368-383.	2.2	52
45	Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems. Journal of Arid Environments, 2012, 83, 69-77.	2.4	52
46	Similarity solution of the Boussinesq equation. Advances in Water Resources, 2000, 23, 725-729.	3.8	50
47	Geometry and position of light nonaqueous-phase liquid lenses in water-wetted porous media. Journal of Contaminant Hydrology, 1995, 19, 269-287.	3.3	49
48	Field evaluation of passive capillary samplers for estimating groundwater recharge. Water Resources Research, 2000, 36, 2407-2416.	4.2	49
49	Soil water balance of annual crop–native shrub systems in Senegal's Peanut Basin: The missing link. Agricultural Water Management, 2007, 90, 137-148.	5.6	49
50	Evaporation from a shallow water table: Diurnal dynamics of water and heat at the surface of drying sand. Water Resources Research, 2013, 49, 4022-4034.	4.2	49
51	Near-Surface Motion in the Nocturnal, Stable Boundary Layer Observed with Fibre-Optic Distributed Temperature Sensing. Boundary-Layer Meteorology, 2015, 154, 189-205.	2.3	48
52	Field Evaluation of Passive Capillary Samplers. Soil Science Society of America Journal, 1996, 60, 1705-1713.	2.2	47
53	Estimation of urban sensible heat flux using a dense wireless network of observations. Environmental Fluid Mechanics, 2009, 9, 635-653.	1.6	47
54	Using Short Soil Moisture Probes with Highâ€Bandwidth Time Domain Reflectometry Instruments. Soil Science Society of America Journal, 1995, 59, 97-102.	2.2	46

#	Article	IF	CITATIONS
55	Modeling effect of initial soil moisture on sorptivity and infiltration. Water Resources Research, 2013, 49, 7037-7047.	4.2	46
56	Processes Controlling the Thermal Regime of Saltmarsh Channel Beds. Environmental Science & Technology, 2008, 42, 671-676.	10.0	45
57	Impact of microbial growth on water flow and solute transport in unsaturated porous media. Water Resources Research, 2006, 42, .	4.2	44
58	Evolution of superficial lake water temperature profile under diurnal radiative forcing. Water Resources Research, 2011, 47, .	4.2	44
59	Hillslope run-off thresholds with shrink-swell clay soils. Hydrological Processes, 2015, 29, 557-571.	2.6	43
60	Improved streamflow recession parameter estimation with attention to calculation of â^' dQ/dt. Advances in Water Resources, 2017, 108, 29-43.	3.8	43
61	Thermohaline stratification and double diffusion diapycnal fluxes in the hypersaline Dead Sea. Limnology and Oceanography, 2016, 61, 1214-1231.	3.1	42
62	Development and Testing of Singleâ€Parameter Precipitation Distributions. Water Resources Research, 1990, 26, 2733-2740.	4.2	40
63	High Intensity Xâ€Ray and Tensiometer Measurements in Rapidly Changing Preferential Flow Fields. Soil Science Society of America Journal, 1993, 57, 1188-1192.	2.2	40
64	Subgrid-Scale Dynamics of Water Vapour, Heat, and Momentum over a Lake. Boundary-Layer Meteorology, 2008, 128, 205-228.	2.3	40
65	A Unified Model for Soil Shrinkage, Subsidence, and Cracking. Vadose Zone Journal, 2016, 15, 1-15.	2.2	40
66	Fiberglass Wick Preparation for Use in Passive Capillary Wick Soil Pore-Water Samplers. Soil Science Society of America Journal, 1993, 57, 1474-1476.	2.2	39
67	Light Transmission Technique for the Evaluation of Colloidal Transport and Dynamics in Porous Media. Environmental Science & Technology, 2003, 37, 3694-3700.	10.0	39
68	Longâ€Term Nitrate Leaching Under Vegetable Production with Cover Crops in the Pacific Northwest. Soil Science Society of America Journal, 2010, 74, 186-195.	2.2	39
69	Green and Ampt infiltration into soils of variable pore size with depth. Water Resources Research, 1999, 35, 1685-1688.	4.2	38
70	Use of porosity to estimate hydraulic properties of volcanic tuffs. Advances in Water Resources, 2003, 26, 561-571.	3.8	38
71	Methods for colloid transport visualization in pore networks. Water Resources Research, 2006, 42, .	4.2	38
72	Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors, 2017, 17, 1098.	3.8	38

#	Article	IF	CITATIONS
73	Three-phase immiscible fluid movement in the vicinity of textural interfaces. Journal of Contaminant Hydrology, 1998, 32, 1-23.	3.3	37
74	Influences of Macropores on Infiltration into Seasonally Frozen Soil. Vadose Zone Journal, 2019, 18, 1-14.	2.2	37
75	Relationships between gas-liquid interfacial surface area, liquid saturation, and light transmission in variably saturated porous media. Water Resources Research, 2002, 38, 10-1-10-12.	4.2	36
76	Permeability Changes in Layered Sediments: Impact of Particle Release. Ground Water, 2002, 40, 466-474.	1.3	36
77	Experimental Observations and Numerical Modeling of Coupled Microbial and Transport Processes in Variably Saturated Sand. Vadose Zone Journal, 2005, 4, 407-417.	2.2	36
78	Heated Fiber Optic Distributed Temperature Sensing: A Dualâ€Probe Heatâ€Pulse Approach. Vadose Zone Journal, 2014, 13, 1-10.	2.2	35
79	Sprinkler Head Maintenance Effects on Water Application Uniformity. Journal of Irrigation and Drainage Engineering - ASCE, 2000, 126, 142-148.	1.0	34
80	Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology, 2020, 13, e2208.	2.4	34
81	Recession analysis revisited: impacts of climate on parameter estimation. Hydrology and Earth System Sciences, 2020, 24, 1159-1170.	4.9	32
82	Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media under Unsaturated-Flow Conditions. Applied and Environmental Microbiology, 2002, 68, 3597-3605.	3.1	31
83	Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation. Water Resources Research, 2016, 52, 2985-2995.	4.2	31
84	The Intensively Managed Landscape Critical Zone Observatory: A Scientific Testbed for Understanding Critical Zone Processes in Agroecosystems. Vadose Zone Journal, 2018, 17, 1-21.	2.2	31
85	One-Dimensional Model to Evaluate the Performance of Wick Samplers in Soils. Soil Science Society of America Journal, 1995, 59, 88-92.	2.2	30
86	On the critical salt concentrations for particle detachment in homogeneous sand and heterogeneous Hanford sediments. Geoderma, 2005, 124, 121-132.	5.1	30
87	Thermal diffusivity of seasonal snow determined from temperature profiles. Advances in Water Resources, 2013, 55, 121-130.	3.8	30
88	An engineering approach to fingered vadose pollutant transport. Geoderma, 1996, 70, 197-206.	5.1	28
89	An Image-Based Method for Determining Bulk Density and the Soil Shrinkage Curve. Soil Science Society of America Journal, 2012, 76, 1217-1221.	2.2	28
90	The motion of trees in the wind: a data synthesis. Biogeosciences, 2021, 18, 4059-4072.	3.3	28

#	Article	IF	CITATIONS
91	Shade estimation over streams using distributed temperature sensing. Water Resources Research, 2011, 47, .	4.2	27
92	Frequency distribution of water and solute transport properties derived from Pan sampler data. Water Resources Research, 1997, 33, 2655-2664.	4.2	26
93	Evaluation of hydrodynamic scaling in porous media using finger dimensions. Water Resources Research, 1998, 34, 1935-1940.	4.2	26
94	Imbibition of saline solutions into dry and prewetted porous media. Advances in Water Resources, 2002, 25, 841-855.	3.8	26
95	Suction Cup Sampler Bias in Leaching Characterization of an Undisturbed Field Soil. Water Resources Research, 1996, 32, 1173-1182.	4.2	25
96	Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil. Agricultural Water Management, 2002, 54, 159-171.	5.6	25
97	Design of Managed Aquifer Recharge for Agricultural and Ecological Water Supply Assessed Through Numerical Modeling. Water Resources Management, 2014, 28, 4971-4984.	3.9	25
98	The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 535-555.	2.1	25
99	Coupled Microbial and Transport Processes in Soils. Vadose Zone Journal, 2004, 3, 368-383.	2.2	25
100	Osmotically Driven Water Vapor Transport in Unsaturated Soils. Soil Science Society of America Journal, 2001, 65, 1634-1641.	2.2	24
101	Comment on "Capabilities and limitations of tracing spatial temperature patterns by fiberâ€optic distributed temperature sensing―by Liliana Rose et al Water Resources Research, 2014, 50, 5372-5374.	4.2	24
102	Modeling multidomain hydraulic properties of shrink-swell soils. Water Resources Research, 2016, 52, 7911-7930.	4.2	24
103	Effect of Soil-Particle Size Contrast on Capillary Barrier Performance. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 885-888.	3.0	23
104	Design of interface shape for protective capillary barriers. Water Resources Research, 1997, 33, 259-260.	4.2	22
105	Numerical estimation of multicomponent adsorption isotherms in preparative chromatography: implications of experimental error. Journal of Chromatography A, 2001, 934, 13-29.	3.7	22
106	Migration of saline solutions in variably saturated porous media. Journal of Contaminant Hydrology, 2004, 72, 109-133.	3.3	22
107	Lateâ€ŧime drainage from a sloping Boussinesq aquifer. Water Resources Research, 2013, 49, 7498-7507.	4.2	22
108	High-resolution temperature sensing in the Dead Sea using fiber optics. Water Resources Research, 2014, 50, 1756-1772.	4.2	22

#	Article	IF	CITATIONS
109	Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing. Sensors, 2018, 18, 1023.	3.8	22
110	Analytical methods for estimating saturated hydraulic conductivity in a tile-drained field. Journal of Hydrology, 2004, 289, 111-127.	5.4	21
111	On the Diurnal Soil Water Content Dynamics during Evaporation using Dielectric Methods. Vadose Zone Journal, 2010, 9, 709-718.	2.2	21
112	An explicit, parsimonious, and accurate estimate for ponded infiltration into soils using the <scp>G</scp> reen and <scp> A</scp> mpt approach. Water Resources Research, 2017, 53, 7481-7487.	4.2	21
113	Classifying the nocturnal atmospheric boundary layer into temperature and flow regimes. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1515-1534.	2.7	20
114	Effective Darcyâ€scale contact angles in porous media imbibing solutions of various surface tensions. Water Resources Research, 2009, 45, .	4.2	19
115	A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media. Journal of Microbiological Methods, 2001, 47, 315-322.	1.6	17
116	Thermal-plume fibre optic tracking (T-POT) test for flow velocity measurement in groundwater boreholes. Geoscientific Instrumentation, Methods and Data Systems, 2015, 4, 197-202.	1.6	17
117	A physical framework for evaluating net effects of wet meadow restoration on lateâ€summer streamflow. Ecohydrology, 2018, 11, e1953.	2.4	17
118	Nondestructive Quantification of Macropore Volume using Shear-Thinning Fluid. Soil Science Society of America Journal, 2014, 78, 445-453.	2.2	16
119	Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 151-162.	1.6	16
120	Mapping highâ€resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother. Water Resources Research, 2016, 52, 7690-7710.	4.2	16
121	EVALUATION OF PROBABILITY DENSITY FUNCTIONS IN PRECIPITATION MODELS FOR THE PACIFIC NORTHWEST. Journal of the American Water Resources Association, 1998, 34, 617-627.	2.4	15
122	Pore scale consideration in unstable gravity driven finger flow. Water Resources Research, 2013, 49, 7815-7819.	4.2	15
123	Improved Characterization of Groundwater Flow in Heterogeneous Aquifers Using Granular Polyacrylamide (PAM) Gel as Temporary Grout. Water Resources Research, 2018, 54, 1410-1419.	4.2	15
124	Using Hyperspectral Imagery to Detect an Invasive Fungal Pathogen and Symptom Severity in Pinus strobiformis Seedlings of Different Genotypes. Remote Sensing, 2020, 12, 4041.	4.0	15
125	SitkaNet: A low-cost, distributed sensor network for landslide monitoring and study. HardwareX, 2021, 9, e00191.	2.2	15
126	Water vapor transport in the vicinity of imbibing saline plumes: Homogeneous and layered unsaturated porous media. Water Resources Research, 2003, 39, .	4.2	14

#	Article	IF	CITATIONS
127	Similarity solution of axisymmetric flow in porous media. Advances in Water Resources, 2005, 28, 1076-1082.	3.8	14
128	Diuron in Surface Runoff and Tile Drainage from Two Grass-Seed Fields. Journal of Environmental Quality, 2006, 35, 303-311.	2.0	14
129	Neutrally buoyant tracers in hydrogeophysics: Field demonstration in fractured rock. Geophysical Research Letters, 2017, 44, 3663-3671.	4.0	14
130	Introduction and evaluation of a <scp>W</scp> eibull hydraulic conductivityâ€pressure head relationship for unsaturated soils. Water Resources Research, 2017, 53, 4956-4964.	4.2	14
131	Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study. Atmospheric Measurement Techniques, 2020, 13, 5423-5439.	3.1	14
132	Visualization and modeling of the colonization dynamics of a bioluminescent bacterium in variably saturated, translucent quartz sand. Advances in Water Resources, 2007, 30, 1593-1607.	3.8	13
133	Measurement Tool for Dynamics of Soil Cracks. Vadose Zone Journal, 2012, 11, vzj2011.0048.	2.2	13
134	Carbon monoxide as a tracer of gas transport in snow and other natural porous media. Geophysical Research Letters, 2012, 39, .	4.0	13
135	Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables. Atmospheric Measurement Techniques, 2020, 13, 1563-1573.	3.1	13
136	A resonating rainfall and evaporation recorder. Water Resources Research, 2012, 48, .	4.2	12
137	Seasonal dynamics of internal waves governed by stratification stability and wind: Analysis of highâ€resolution observations from the Dead Sea. Limnology and Oceanography, 2019, 64, 1864-1882.	3.1	12
138	Peak grain forecasts for the US High Plains amid withering waters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26145-26150.	7.1	12
139	Correcting artifacts in transition to a wound optic fiber: Example from high-resolution temperature profiling in the Dead Sea. Water Resources Research, 2014, 50, 5329-5333.	4.2	11
140	Taking the Temperature of Ecological Systems With Fiber Optics: Fiber Optic Distributed Temperature Sensing for Ecological Characterization; Blue River, Oregon, 10-15 September 2007. Eos, 2008, 89, 187-187.	0.1	10
141	A new instrument to measure plot-scale runoff. Geoscientific Instrumentation, Methods and Data Systems, 2015, 4, 57-64.	1.6	10
142	Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics. Water Resources Research, 2016, 52, 6419-6439.	4.2	10
143	A Modification to the Bouwer and Rice Method of Slug-Test Analysis for Large-Diameter, Hand-Dug Wells. Ground Water, 2001, 39, 308-314.	1.3	9
144	Solute and sediment transport at laboratory and field scale: Contributions of JY. Parlange. Water Resources Research, 2013, 49, 6111-6136.	4.2	9

#	Article	IF	CITATIONS
145	Analytical estimation show low depthâ€independent water loss due to vapor flux from deep aquifers. Water Resources Research, 2017, 53, 4562-4563.	4.2	9
146	Skin Effect of Fresh Water Measured Using Distributed Temperature Sensing. Water (Switzerland), 2018, 10, 214.	2.7	9
147	Fertilizer Diffusion in Container Medium. Journal of the American Society for Horticultural Science, 1997, 122, 122-128.	1.0	9
148	Influence of transitional volcanic strata on lateral diversion at Yucca Mountain, Nevada. Water Resources Research, 2003, 39, .	4.2	8
149	Optical Fiber-Based Distributed Sensing Methods. Springer Handbooks, 2021, , 609-631.	0.6	8
150	Analytical Solution for Normal Irrigation Distribution Parameters. Journal of Irrigation and Drainage Engineering - ASCE, 2001, 127, 45-48.	1.0	7
151	Comment on "On the continuum-scale modeling of gravity-driven fingers in unsaturated porous media: The inadequacy of the Richards equation with standard monotonic constitutive relations and hysteretic equations of state―by Mehdi Eliassi and Robert J. Gla. Water Resources Research, 2003, 39, .	4.2	7
152	Effects of sodium chloride on constitutive relations in variably saturated porous media. Water Resources Research, 2006, 42, .	4.2	7
153	HyperRail: Modular, 3D printed, 1–100â€ [−] m, programmable, and low-cost linear motion control system for imaging and sensor suites. HardwareX, 2019, 6, e00081.	2.2	7
154	eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications. HardwareX, 2021, 9, e00193.	2.2	7
155	Hypnos board: A low-cost all-in-one solution for environment sensor power management, data storage, and task scheduling. HardwareX, 2021, 10, e00213.	2.2	7
156	New User Facility for Environmental Sensing. Eos, 2009, 90, 483.	0.1	6
157	Flume testing of underwater seep detection using temperature sensing on or just below the surface of sand or gravel sediments. Water Resources Research, 2014, 50, 4530-4534.	4.2	6
158	Discussion: "Meadow Restoration Increases Baseflow and Groundwater Storage in the Sierra Nevada Mountains of California―by Luke J.H. Hunt, Julie Fair, and Maxwell Odland. Journal of the American Water Resources Association, 2020, 56, 182-185.	2.4	6
159	Low-cost and precise inline pressure sensor housing and DAQ for use in laboratory experiments. HardwareX, 2020, 8, e00112.	2.2	6
160	Mixing and finger morphologies in miscible non-Newtonian solution displacement. Experiments in Fluids, 2020, 61, 1.	2.4	6
161	Nitrogen inputs best predict farm field nitrate leaching in the Willamette Valley, Oregon. Nutrient Cycling in Agroecosystems, 2021, 120, 223-242.	2.2	6
162	Thermodynamic Correction for Salts in Variably Saturated Porous Media. Transport in Porous Media, 2006, 63, 381-398.	2.6	5

J S SELKER

#	Article	IF	CITATIONS
163	Observations of gas flow in porous media using a light transmission technique. Water Resources Research, 2006, 42, .	4.2	4
164	The ah ha moment of measurement: Introduction to the special section on Hydrologic Measurement Methods. Water Resources Research, 2009, 45, .	4.2	4
165	Practical strategies for identifying groundwater discharges into sediment and surface water with fiber optic temperature measurement. Environmental Sciences: Processes and Impacts, 2014, 16, 1772-1778.	3.5	4
166	Comparison of fiber-optic distributed temperature sensing and high-sensitivity sensor spatial surveying of stream temperature. Journal of Hydrology, 2021, 603, 127015.	5.4	4
167	NLEAP Computer Model and Multiple Linear Regression Prediction of Nitrate Leaching in Vegetable Systems. HortTechnology, 2002, 12, 250-256.	0.9	4
168	Model selection and timing of acquisition date impacts classification accuracy: A case study using hyperspectral imaging to detect white pine blister rust over time. Computers and Electronics in Agriculture, 2021, 191, 106555.	7.7	4
169	Survey provides guidance for consortium's hydrologic measurement facility. Eos, 2006, 87, 222.	0.1	3
170	Unconfined Aquifer Permeability near hand-dug Wells in the Coastal and Interior dryland of the Libertador General Bernardo O'Higgins Region, Chile. Chilean Journal of Agricultural Research, 2011, 71, 267-274.	1.1	3
171	Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements. Geoscientific Instrumentation, Methods and Data Systems, 2015, 4, 19-22.	1.6	3
172	Quantification and Scaling of Infiltration and Percolation from a Constructed Wetland. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	3
173	Attenuation of wind-induced pressure perturbations in alpine snow. Journal of Glaciology, 2016, 62, 674-683.	2.2	3
174	Wind enhances differential air advection in surface snow at sub-meter scales. Cryosphere, 2017, 11, 2075-2087.	3.9	3
175	Streamflow Recession Analysis Using Water Height. Water Resources Research, 2020, 56, e2020WR027091.	4.2	3
176	Lessons in New Measurement Technologies: From Instrumenting Trees to the Trans-African Hydrometeorological Observatory. Ecological Studies, 2020, , 131-144.	1.2	3
177	An environmentally driven time-integrating water sampler. Water Resources Research, 2005, 41, .	4.2	2
178	Correction of the Buckingham–Darcy Law for flow of high strength salts in variably saturated porous media. Advances in Water Resources, 2007, 30, 469-482.	3.8	2
179	Editorial: Building on the legacy of <i>Water Resources Research</i> . Water Resources Research, 2009, 45, .	4.2	2
180	Assessment of current and potential yield of hand-dug wells in a semi-arid zone in south-central Chile using an analytical methodology. Chilean Journal of Agricultural Research, 2014, 74, 219-224.	1.1	2

#	Article	IF	CITATIONS
181	Comment on "Base Flow Recession from Unsaturatedâ€Saturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility―by Liang, X., H. Zhan, Y.â€K. Zhang, and K. Schilling (2017). Water Resources Research, 2018, 54, 3217-3219.	4.2	2
182	Reply to Comment by N. Shokri on "Analytical Estimation Show Low Depthâ€Independent Water Loss Due to Vapor Flux From Deep Aquifers― Water Resources Research, 2019, 55, 3599-3602.	4.2	2
183	Coupling highâ€resolution monitoring and modelling to verify restorationâ€based temperature improvements. River Research and Applications, 2020, 36, 1430-1441.	1.7	2
184	Fiber Optic Measurements of Soil Moisture in a Waste Rock Pile. Ground Water, 2021, 59, 549-561.	1.3	2
185	Applying Preferential Flow Concepts to Horticultural Water Management. HortTechnology, 1996, 6, 107-110.	0.9	2
186	High precision zero-friction magnetic dendrometer. HardwareX, 2021, 10, e00248.	2.2	2
187	Identifying and quantifying sources of temporal and spatial uncertainty in assessing salmonid responses to <scp>watershedâ€scale</scp> restoration. River Research and Applications, 2022, 38, 884-894.	1.7	2
188	Weed Warden: A Low-Cost Weed Detection Device Implemented with Spectral Triad Sensor for Agricultural Applications. HardwareX, 2022, 11, e00303.	2.2	2
189	Tension infiltrometer enhancements with automated pneumatic control and more durable base plate. Water Resources Research, 2009, 45, .	4.2	1
190	Corrigendum to "A distributed stream temperature model using high resolution temperature observations" published in Hydrol. Earth Syst. Sci., 11, 1469–1480, 2007. Hydrology and Earth System Sciences, 2011, 15, 3091-3091.	4.9	1
191	A low-cost acoustic permeameter. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 199-207.	1.6	1
192	Tree Sway Time Series of 7 Amazon Tree Species (July 2015–May 2016). Frontiers in Earth Science, 2018, 6,	1.8	1
193	Comment on "Tensiometer Data Acquisition System for Hydrological Studies Requiring High Temporal Resolutionâ€: Soil Science Society of America Journal, 1991, 55, 1803-1803.	2.2	1
194	Field sampling considerations for the stem nitrate test in peppermint. Communications in Soil Science and Plant Analysis, 1998, 29, 3073-3091.	1.4	0
195	Postharvest water requirements of peppermint. Communications in Soil Science and Plant Analysis, 1999, 30, 1657-1666.	1.4	0
196	Breaking the cycle of futility in Hydrosciences. Hydrological Processes, 2002, 16, 743-744.	2.6	0
197	A glass always half full: Reconsideration of the Wales apparatus to apply constant head boundary conditions. Water Resources Research, 2007, 43, .	4.2	0

198 Measuring Soil Moisture in a Heterogeneous Field. , 2009, , .

J S SELKER

#	Article	IF	CITATIONS
199	Learning from the scientific legacies of W. Brutsaert and JY. Parlange. Water Resources Research, 2014, 50, 1856-1857.	4.2	Ο
200	Further Analysis of the Development of Vadose Water Profiles Over Deep Aquifers With Minimal Recharge. Water Resources Research, 2019, 55, 7929-7938.	4.2	0
201	Highâ€resolution temperature modeling of stream reconstruction alternatives. River Research and Applications, 2021, 37, 931-942.	1.7	0
202	SHORT TDR PROBES TO MEASURE WATER AND FERTILIZER ION GRADIENTS IN CONTAINER MEDIA. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 742c-742.	1.0	0