Ravindra K Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2275191/publications.pdf

Version: 2024-02-01

		81900	27406
108	14,890	39	106
papers	citations	h-index	g-index
140	140	140	19117
110	110	110	17117
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Innovative vaccine approachesâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	3.8	5
2	Disengagement from HIV care and failure of second-line therapy in Nigeria. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, Publish Ahead of Print, .	2.1	1
3	B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Reports, 2022, 38, 110393.	6.4	29
4	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	27.8	756
5	Poor neutralization and rapid decay of antibodies to SARS-CoV-2 variants in vaccinated dialysis patients. PLoS ONE, 2022, 17, e0263328.	2.5	21
6	Coagulation factor V is a T-cell inhibitor expressed by leukocytes in COVID-19. IScience, 2022, 25, 103971.	4.1	7
7	Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Molecular Biology and Evolution, 2022, 39, .	8.9	84
8	HIV-1 Evolutionary Dynamics under Nonsuppressive Antiretroviral Therapy. MBio, 2022, 13, e0026922.	4.1	5
9	Transmission of B.1.617.2 Delta variant between vaccinated healthcare workers. Scientific Reports, 2022, 12, .	3.3	9
10	SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592, 277-282.	27.8	802
11	Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating. Wellcome Open Research, 2021, 6, 56.	1.8	7
12	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	27.8	648
13	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	6.4	200
14	Will SARS-CoV-2 variants of concern affect the promise of vaccines?. Nature Reviews Immunology, 2021, 21, 340-341.	22.7	162
15	Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature, 2021, 596, 417-422.	27.8	549
16	Longitudinal analysis reveals that delayed bystander CD8+ TÂcell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity, 2021, 54, 1257-1275.e8.	14.3	230
17	SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021, 19, 409-424.	28.6	2,650
	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell	6.4	375

#	Article	IF	CITATIONS
19	Failure to seroconvert after two doses of BNT162b2 SARS-CoV-2 vaccine in a patient with uncontrolled HIV. Lancet HIV,the, 2021, 8, e317-e318.	4.7	36
20	SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion. Journal of Infectious Diseases, 2021, 224, 989-994.	4.0	136
21	T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathogens, 2021, 17, e1009871.	4.7	25
22	The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell, 2021, 184, 5189-5200.e7.	28.9	186
23	O07â€FXR antagonists as new agents for COVID19. , 2021, , .		1
24	The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 2021, 22, 757-773.	16.3	778
25	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	27.8	1,041
26	Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating. Wellcome Open Research, 2021, 6, 56.	1.8	28
27	Persistent SARS-CoV-2 infection: the urgent need for access to treatment and trials. Lancet Infectious Diseases, The, 2021, 21, 1345-1347.	9.1	26
28	Deep sequencing of HIV-1 reveals extensive subtype variation and drug resistance after failure of first-line antiretroviral regimens in Nigeria. Journal of Antimicrobial Chemotherapy, 2021, , .	3.0	8
29	Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science, 2021, 374, 995-999.	12.6	230
30	Drivers of HIV-1 drug resistance to non-nucleoside reverse-transcriptase inhibitors (NNRTIs) in nine southern African countries: a modelling study. BMC Infectious Diseases, 2021, 21, 1042.	2.9	7
31	Adherence, resistance, and viral suppression on dolutegravir in sub-Saharan Africa: implications for the TLD era. Aids, 2021, 35, S127-S135.	2.2	21
32	COVID-19 vaccine breakthrough infections. Science, 2021, 374, 1561-1562.	12.6	81
33	Human Immunodeficiency Virus-1 Viral Load Is Elevated in Individuals With Reverse-Transcriptase Mutation M184V/I During Virological Failure of First-Line Antiretroviral Therapy and Is Associated With Compensatory Mutation L74I. Journal of Infectious Diseases, 2020, 222, $1108-1116$.	4.0	19
34	Point of Care Nucleic Acid Testing for SARS-CoV-2 in Hospitalized Patients: A Clinical Validation Trial and Implementation Study. Cell Reports Medicine, 2020, 1, 100062.	6.5	47
35	Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant. Cell Reports Medicine, 2020, 1, 100099.	6.5	61
36	Performance Evaluation of the SAMBA II SARS-CoV-2 Test for Point-of-Care Detection of SARS-CoV-2. Journal of Clinical Microbiology, 2020, 59, .	3.9	38

3

#	Article	IF	Citations
37	Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase. Nature Communications, 2020, 11, 5922.	12.8	55
38	Cell Cycle Regulation in Macrophages and Susceptibility to HIV-1. Viruses, 2020, 12, 839.	3.3	14
39	Virological failure, HIV-1 drug resistance, and early mortality in adults admitted to hospital in Malawi: an observational cohort study. Lancet HIV,the, 2020, 7, e620-e628.	4.7	46
40	<i>In Vivo</i> Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix. MBio, 2020, 11, .	4.1	11
41	Predictors of first-line antiretroviral therapy failure among adults and adolescents living with HIV/AIDS in a large prevention and treatment program in Nigeria. AIDS Research and Therapy, 2020, 17, 64.	1.7	5
42	The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nature Communications, 2020, 11, 5387.	12.8	79
43	Evidence for HIV-1 cure after CCR5Δ32∫Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV,the, 2020, 7, e340-e347.	4.7	151
44	TLR4-Mediated Pathway Triggers Interferon-Independent GO Arrest and Antiviral SAMHD1 Activity in Macrophages. Cell Reports, 2020, 30, 3972-3980.e5.	6.4	29
45	Updated assessment of risks and benefits of dolutegravir versus efavirenz in new antiretroviral treatment initiators in sub-Saharan Africa: modelling to inform treatment guidelines. Lancet HIV,the, 2020, 7, e193-e200.	4.7	41
46	High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment. Journal of Antimicrobial Chemotherapy, 2020, 75, 1575-1579.	3.0	12
47	Pretreatment HIV drug resistance in low- and middle-income countries. Future Virology, 2019, 14, 427-440.	1.8	3
48	Trends in Pretreatment HIV-1 Drug Resistance in Antiretroviral Therapy-naive Adults in South Africa, 2000–2016: A Pooled Sequence Analysis. EClinicalMedicine, 2019, 9, 26-34.	7.1	51
49	HIV-1 remission following CCR5î"32/î"32 haematopoietic stem-cell transplantation. Nature, 2019, 568, 244-248.	27.8	447
50	Predicted antiviral activity of tenofovir versus abacavir in combination with a cytosine analogue and the integrase inhibitor dolutegravir in HIV-1-infected South African patients initiating or failing first-line ART. Journal of Antimicrobial Chemotherapy, 2019, 74, 473-479.	3.0	15
51	Risks and benefits of dolutegravir-based antiretroviral drug regimens in sub-Saharan Africa: a modelling study. Lancet HIV,the, 2019, 6, e116-e127.	4.7	84
52	HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infectious Diseases, The, 2018, 18, 346-355.	9.1	290
53	<scp>DNA</scp> damage induced by topoisomerase inhibitors activates <scp>SAMHD</scp> 1 and blocks <scp>HIV</scp> â€₁ infection of macrophages. EMBO Journal, 2018, 37, 50-62.	7.8	44
54	HIV Cerebrospinal Fluid Escape and Neurocognitive Pathology in the Era of Combined Antiretroviral Therapy: What Lies Beneath the Tip of the Iceberg in Sub-Saharan Africa?. Brain Sciences, 2018, 8, 190.	2.3	16

#	Article	IF	CITATIONS
55	A G1â€like state allows <scp>HIV</scp> â€l to bypass <scp>SAMHD</scp> 1 restriction in macrophages. EMBO Journal, 2017, 36, 604-616.	7.8	82
56	Rapid accumulation of HIV-1 thymidine analogue mutations and phenotypic impact following prolonged viral failure on zidovudine-based first-line ART in sub-Saharan Africa. Journal of Antimicrobial Chemotherapy, 2017, 72, 1450-1455.	3.0	15
57	Mutational Correlates of Virological Failure in Individuals Receiving a WHO-Recommended Tenofovir-Containing First-Line Regimen: An International Collaboration. EBioMedicine, 2017, 18, 225-235.	6.1	28
58	Occult HIV-1 drug resistance to thymidine analogues following failure of first-line tenofovir combined with a cytosine analogue and nevirapine or efavirenz in sub Saharan Africa: a retrospective multi-centre cohort study. Lancet Infectious Diseases, The, 2017, 17, 296-304.	9.1	58
59	Diffuse White Matter Signal Abnormalities on Magnetic Resonance Imaging Are Associated With Human Immunodeficiency Virus Type 1 Viral Escape in the Central Nervous System Among Patients With Neurological Symptoms. Clinical Infectious Diseases, 2017, 64, 1059-1065.	5.8	36
60	Virological Outcomes of Second-line Protease Inhibitor–Based Treatment for Human Immunodeficiency Virus Type 1 in a High-Prevalence Rural South African Setting: A Competing-Risks Prospective Cohort Analysis. Clinical Infectious Diseases, 2017, 64, 1006-1016.	5.8	37
61	Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation. PLoS ONE, 2017, 12, e0181357.	2.5	31
62	Virological efficacy of PI monotherapy for HIV-1 in clinical practice. Journal of Antimicrobial Chemotherapy, 2016, 71, 3228-3234.	3.0	12
63	Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency. Scientific Reports, 2016, 6, 38153.	3.3	10
64	Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. Lancet Infectious Diseases, The, 2016, 16, 565-575.	9.1	217
65	Sequential CCR5-Tropic HIV-1 Reactivation from Distinct Cellular Reservoirs following Perturbation of Elite Control. PLoS ONE, 2016, 11, e0158854.	2.5	4
66	Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance. PLoS ONE, 2016, 11, e0163746.	2.5	20
67	Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection. Virology, 2015, 482, 72-78.	2.4	18
68	Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo. Clinical Infectious Diseases, 2015, 61, 120-128.	5.8	17
69	HIV-1 subtype influences susceptibility and response to monotherapy with the protease inhibitor lopinavir/ritonavir. Journal of Antimicrobial Chemotherapy, 2015, 70, 243-248.	3.0	18
70	Gag-Protease Sequence Evolution Following Protease Inhibitor Monotherapy Treatment Failure in HIV-1 Viruses Circulating in East Africa. AIDS Research and Human Retroviruses, 2015, 31, 1032-1037.	1.1	15
71	Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial. PLoS ONE, 2015, 10, e0137834.	2.5	17
72	HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing. PLoS ONE, 2015, 10, e0145772.	2.5	72

#	Article	IF	Citations
73	The arrival of untreatable multidrug-resistant HIV-1 in sub-Saharan Africa. Aids, 2014, 28, 1373-1374.	2.2	9
74	Phenotypic characterization of virological failure following lopinavir/ritonavir monotherapy using full-length gag-protease genes. Journal of Antimicrobial Chemotherapy, 2014, 69, 3340-3348.	3.0	16
75	High Rate of HIV Resuppression After Viral Failure on First-line Antiretroviral Therapy in the Absence of Switch to Second-line Therapy. Clinical Infectious Diseases, 2014, 58, 1023-1026.	5.8	36
76	Vpx complementation of †non-macrophage tropic†R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages. Retrovirology, 2014, 11, 25.	2.0	11
77	A Declining CD4 Count and Diagnosis of HIV-Associated Hodgkin Lymphoma: Do Prior Clinical Symptoms and Laboratory Abnormalities Aid Diagnosis?. PLoS ONE, 2014, 9, e87442.	2.5	5
78	Emergence of HIV Drug Resistance During First- and Second-Line Antiretroviral Therapy in Resource-Limited Settings. Journal of Infectious Diseases, 2013, 207, S49-S56.	4.0	117
79	Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: from treatment to prevention. Retrovirology, 2013, 10, 82.	2.0	6
80	The "Silent―Global Burden of Congenital Cytomegalovirus. Clinical Microbiology Reviews, 2013, 26, 86-102.	13.6	771
81	Oral Antiretroviral Drugs as Public Health Tools for HIV Prevention: Global Implications for Adherence, Drug Resistance, and the Success of HIV Treatment Programs. Journal of Infectious Diseases, 2013, 207, S101-S106.	4.0	21
82	Resistance at Virological Failure Using Boosted Protease Inhibitors Versus Nonnucleoside Reverse Transcriptase Inhibitors As First-Line Antiretroviral Therapy—Implications for Sustained Efficacy of ART in Resource-Limited Settings. Journal of Infectious Diseases, 2013, 207, S78-S84.	4.0	29
83	Macrophages. Current Opinion in Infectious Diseases, 2013, 26, 561-566.	3.1	36
84	Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet, The, 2012, 380, 1250-1258.	13.7	324
85	HIV-1 Group P is unable to antagonize human tetherin by Vpu, Env or Nef. Retrovirology, 2011, 8, 103.	2.0	61
86	The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains. Retrovirology, 2011, 8, 31.	2.0	12
87	Impact of the N348I Mutation in HIV-1 Reverse Transcriptase on Nonnucleoside Reverse Transcriptase Inhibitor Resistance in Non-Subtype B HIV-1. Antimicrobial Agents and Chemotherapy, 2011, 55, 1806-1809.	3.2	21
88	Drug Resistance in Human Immunodeficiency Virus Type-1 Infected Zambian Children Using Adult Fixed Dose Combination Stavudine, Lamivudine, and Nevirapine. Pediatric Infectious Disease Journal, 2010, 29, e57-e62.	2.0	19
89	Ultra Structural Characterisation of Tetherin - a Protein Capable of Preventing Viral Release from the Plasma Membrane. Viruses, 2010, 2, 987-994.	3.3	0
90	Full-length HIV-1 Gag determines protease inhibitor susceptibility within in-vitro assays. Aids, 2010, 24, 1651-1655.	2.2	66

#	Article	IF	Citations
91	Causes and Consequences of Incomplete HIV RNA Suppression in Clinical Trials. HIV Clinical Trials, 2009, 10, 289-298.	2.0	36
92	Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion. PLoS Pathogens, 2009, 5, e1000443.	4.7	171
93	Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20889-20894.	7.1	151
94	A Tail of Tetherin: How Pandemic HIV-1 Conquered the World. Cell Host and Microbe, 2009, 6, 393-395.	11.0	25
95	Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2009, 9, 409-417.	9.1	216
96	Management of paediatric HIV-1 resistance. Current Opinion in Infectious Diseases, 2009, 22, 256-263.	3.1	21
97	Emergence of Drug Resistance in HIV Type 1–Infected Patients after Receipt of Firstâ€Line Highly Active Antiretroviral Therapy: A Systematic Review of Clinical Trials. Clinical Infectious Diseases, 2008, 47, 712-722.	5.8	165
98	Bacterial Pneumonia and Pandemic Influenza Planning. Emerging Infectious Diseases, 2008, 14, 1187-1192.	4.3	109
99	Timing of monoclonal antibody for seasonal RSV prophylaxis in the United Kingdom. Epidemiology and Infection, 2007, 135, 159-162.	2.1	36
100	HIV resistance and the developing world. International Journal of Antimicrobial Agents, 2007, 29, 510-517.	2.5	31
101	Influenza pandemic plans: what about displaced populations?. Lancet Infectious Diseases, The, 2006, 6, 256-257.	9.1	4
102	Clinical recognition of meningococcal disease. Lancet, The, 2006, 367, 1395.	13.7	1
103	Public Understanding of Pandemic Influenza, United Kingdom. Emerging Infectious Diseases, 2006, 12, 1620-1621.	4.3	12
104	Oseltamivir Resistance in Influenza A (H5N1) Infection. New England Journal of Medicine, 2006, 354, 1423-1424.	27.0	29
105	K65R and Y181C are less prevalent in HAART-experienced HIV-1 subtype A patients. Aids, 2005, 19, 1916-1919.	2.2	31
106	Mumps and the UK epidemic 2005. BMJ: British Medical Journal, 2005, 330, 1132-1135.	2.3	137
107	NO EVIDENCE OF CARDIOTOXICITY OF ATOVAQUONE-PROGUANIL ALONE OR IN COMBINATION WITH ARTESUNATE. American Journal of Tropical Medicine and Hygiene, 2005, 73, 267-268.	1.4	10
108	Point of care SARS-CoV-2 nucleic acid testing in schools improves school attendance. Wellcome Open Research, 0, 7, 8.	1.8	0