Otso Ovaskainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2274855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science, 2013, 339, 1615-1618.	6.0	1,130
2	The metapopulation capacity of a fragmented landscape. Nature, 2000, 404, 755-758.	13.7	894
3	State–space models of individual animal movement. Trends in Ecology and Evolution, 2008, 23, 87-94.	4.2	708
4	How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 2017, 20, 561-576.	3.0	646
5	So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology and Evolution, 2015, 30, 766-779.	4.2	607
6	Extinction Debt at Extinction Threshold. Conservation Biology, 2002, 16, 666-673.	2.4	458
7	Stochastic models of population extinction. Trends in Ecology and Evolution, 2010, 25, 643-652.	4.2	338
8	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	2.4	290
9	Defaunation affects carbon storage in tropical forests. Science Advances, 2015, 1, e1501105.	4.7	285
10	Community-level phenological response to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13434-13439.	3.3	258
11	Joint species distribution modelling with the <scp>r</scp> â€package H <scp>msc</scp> . Methods in Ecology and Evolution, 2020, 11, 442-447.	2.2	245
12	Modeling species coâ€occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 2010, 91, 2514-2521.	1.5	237
13	Metapopulation theory for fragmented landscapes. Theoretical Population Biology, 2003, 64, 119-127.	0.5	227
14	Dispersal-related life-history trade-offs in a butterfly metapopulation. Journal of Animal Ecology, 2006, 75, 91-100.	1.3	204
15	Spatially Structured Metapopulation Models: Global and Local Assessment of Metapopulation Capacity. Theoretical Population Biology, 2001, 60, 281-302.	0.5	198
16	Making more out of sparse data: hierarchical modeling of species communities. Ecology, 2011, 92, 289-295.	1.5	195
17	HABITAT-SPECIFIC MOVEMENT PARAMETERS ESTIMATED USING MARK–RECAPTURE DATA AND A DIFFUSION MODEL. Ecology, 2004, 85, 242-257.	1.5	184
18	Variation in migration propensity among individuals maintained by landscape structure. Ecology Letters, 2004, 7, 958-966.	3.0	174

#	Article	IF	CITATIONS
19	Specialist species of woodâ€ i nhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 2013, 101, 701-712.	1.9	172
20	Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 2016, 7, 428-436.	2.2	170
21	Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 2014, 344, 1289-1293.	6.0	165
22	Using latent variable models to identify large networks of speciesâ€ŧoâ€species associations at different spatial scales. Methods in Ecology and Evolution, 2016, 7, 549-555.	2.2	161
23	Flight metabolic rate and <i>Pgi</i> genotype influence butterfly dispersal rate in the field. Ecology, 2009, 90, 2223-2232.	1.5	159
24	Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 0, 4, 37-63.	0.8	157
25	Connecting Earth observation to high-throughput biodiversity data. Nature Ecology and Evolution, 2017, 1, 176.	3.4	156
26	Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME Journal, 2013, 7, 1696-1709.	4.4	144
27	Long-Term Persistence of Species and the SLOSS Problem. Journal of Theoretical Biology, 2002, 218, 419-433.	0.8	143
28	Using joint species distribution models for evaluating how speciesâ€ŧoâ€species associations depend on the environmental context. Methods in Ecology and Evolution, 2017, 8, 443-452.	2.2	132
29	Transient Dynamics in Metapopulation Response to Perturbation. Theoretical Population Biology, 2002, 61, 285-295.	0.5	125
30	A fungal perspective on conservation biology. Conservation Biology, 2015, 29, 61-68.	2.4	125
31	Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures. Microbiome, 2018, 6, 106.	4.9	123
32	Metapopulation Models for Extinction Threshold in Spatially Correlated Landscapes. Journal of Theoretical Biology, 2002, 215, 95-108.	0.8	122
33	Biased movement at a boundary and conditional occupancy times for diffusion processes. Journal of Applied Probability, 2003, 40, 557-580.	0.4	122
34	Long-Term Persistence of Species and the SLOSS Problem. Journal of Theoretical Biology, 2002, 218, 419-433.	0.8	121
35	Ecological speciation in postglacial <scp>E</scp> uropean whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and Evolution, 2013, 3, 4970-4986.	0.8	117
36	Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME Journal, 2017, 11, 1964-1974.	4.4	115

#	Article	IF	CITATIONS
37	Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19090-19095.	3.3	114
38	Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos, 2012, 121, 961-974.	1.2	112
39	A New Method to Uncover Signatures of Divergent and Stabilizing Selection in Quantitative Traits. Genetics, 2011, 189, 621-632.	1.2	110
40	Effects of ecological continuity on species richness and composition in forests and woodlands: A review. Ecoscience, 2014, 21, 34-45.	0.6	107
41	From Individual Behavior to Metapopulation Dynamics: Unifying the Patchy Population and Classic Metapopulation Models. American Naturalist, 2004, 164, 364-377.	1.0	101
42	Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate highâ€amplitude cycles. Global Change Biology, 2013, 19, 697-710.	4.2	101
43	Identifying wood-inhabiting fungi with 454 sequencing – what is the probability that BLAST gives the correct species?. Fungal Ecology, 2010, 3, 274-283.	0.7	97
44	How much does an individual habitat fragment contribute to metapopulation dynamics and persistence?. Theoretical Population Biology, 2003, 64, 481-495.	0.5	91
45	Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecology, 2014, 11, 17-28.	0.7	91
46	BAYESIAN METHODS FOR ANALYZING MOVEMENTS IN HETEROGENEOUS LANDSCAPES FROM MARK–RECAPTURE DATA. Ecology, 2008, 89, 542-554.	1.5	90
47	Ecoâ€Evolutionary Metapopulation Dynamics and the Spatial Scale of Adaptation. American Naturalist, 2011, 177, 29-43.	1.0	89
48	Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology, 2017, 98, 1729-1729.	1.5	89
49	Measuring and predicting the influence of traits on the assembly processes of woodâ€inhabiting fungi. Journal of Ecology, 2017, 105, 1070-1081.	1.9	88
50	Do small spores disperse further than large spores?. Ecology, 2014, 95, 1612-1621.	1.5	87
51	Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology, 2006, 20, 415-430.	0.5	86
52	Space and stochasticity in population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12781-12786.	3.3	85
53	How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170768.	1.2	84
54	Spatial location dominates over host plant genotype in structuring an herbivore community. Ecology, 2010, 91, 2660-2672.	1.5	83

#	Article	IF	CITATIONS
55	Metapopulation Dynamics in Highly Fragmented Landscapes. , 2004, , 73-103.		82
56	Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2983-2990.	1.2	78
57	Quantifying uncertainty of taxonomic placement in <scp>DNA</scp> barcoding and metabarcoding. Methods in Ecology and Evolution, 2017, 8, 398-407.	2.2	77
58	Shell deformation states and the finite element method: A benchmark study of cylindrical shells. Computer Methods in Applied Mechanics and Engineering, 1995, 128, 81-121.	3.4	75
59	Unbiased probabilistic taxonomic classification for DNA barcoding. Bioinformatics, 2016, 32, 2920-2927.	1.8	75
60	Habitat fragmentation and species diversity in competitive communities. Ecology Letters, 2020, 23, 506-517.	3.0	72
61	A general mathematical framework for the analysis of spatiotemporal point processes. Theoretical Ecology, 2014, 7, 101-113.	0.4	71
62	Modelling single nucleotide effects in <i>phosphoglucose isomerase</i> on dispersal in the Glanville fritillary butterfly: coupling of ecological and evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1519-1532.	1.8	70
63	Computationally efficient joint species distribution modeling of big spatial data. Ecology, 2020, 101, e02929.	1.5	70
64	<scp>Protax</scp> â€fungi: a webâ€based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. New Phytologist, 2018, 220, 517-525.	3.5	69
65	A Bayesian framework for comparative quantitative genetics. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 669-678.	1.2	65
66	Interactions between dispersal, competition, and landscape heterogeneity. Oikos, 2007, 116, 1106-1119.	1.2	64
67	Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landscape Ecology, 2008, 23, 69-78.	1.9	64
68	Towards a general formalization of encounter rates in ecology. Theoretical Ecology, 2013, 6, 189-202.	0.4	63
69	What can observational data reveal about metacommunity processes?. Ecography, 2019, 42, 1877-1886.	2.1	63
70	A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. Journal of Ecology, 2009, 97, 1320-1328.	1.9	62
71	Characteristic Spatial and Temporal Scales Unify Models of Animal Movement. American Naturalist, 2011, 178, 113-123.	1.0	62
72	An Empirical Test of a Diffusion Model: Predicting Clouded Apollo Movements in a Novel Environment. American Naturalist, 2008, 171, 610-619.	1.0	60

#	Article	IF	CITATIONS
73	Summer movements, predation and habitat use of wolves in human modified boreal forests. Oecologia, 2011, 165, 891-903.	0.9	60
74	LOCAL ADAPTATION IN A CHANGING WORLD: THE ROLES OF GENE-FLOW, MUTATION, AND SEXUAL REPRODUCTION. Evolution; International Journal of Organic Evolution, 2011, 65, 79-89.	1.1	58
75	The past and the present in decisionâ€making: the use of conspecific and heterospecific cues in nest site selection. Ecology, 2014, 95, 3428-3439.	1.5	57
76	Correlated velocity models as a fundamental unit of animal movement: synthesis and applications. Movement Ecology, 2017, 5, 13.	1.3	56
77	INFERRING EVOLUTIONARY SIGNALS FROM ECOLOGICAL DATA IN A PLANT–PATHOGEN METAPOPULATION. Ecology, 2006, 87, 880-891.	1.5	54
78	Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape. Scientific Reports, 2018, 8, 3819.	1.6	54
79	Give me a sample of air and I will tell which species are found from your region: Molecular identification of fungi from airborne spore samples. Molecular Ecology Resources, 2018, 18, 511-524.	2.2	54
80	EVOLUTIONARY RESPONSES OF DISPERSAL DISTANCE TO LANDSCAPE STRUCTURE AND HABITAT LOSS. Evolution; International Journal of Organic Evolution, 2011, 65, 1739-1751.	1.1	53
81	<scp>driftsel</scp> : an R package for detecting signals of natural selection in quantitative traits. Molecular Ecology Resources, 2013, 13, 746-754.	2.2	53
82	Fungal communities decline with urbanization—more in air than in soil. ISME Journal, 2020, 14, 2806-2815.	4.4	53
83	Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos, 2011, 120, 1099-1109.	1.2	52
84	Bayesian approaches in evolutionary quantitative genetics. Journal of Evolutionary Biology, 2008, 21, 949-957.	0.8	51
85	SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Molecular Ecology Resources, 2020, 20, 256-267.	2.2	50
86	Estimating Population-Level Coancestry Coefficients by an Admixture F Model. Genetics, 2012, 192, 609-617.	1.2	49
87	Maternal effects shape the seed mycobiome in <i>Quercus petraea</i> . New Phytologist, 2021, 230, 1594-1608.	3.5	47
88	Climate change reshuffles northern species within their niches. Nature Climate Change, 2022, 12, 587-592.	8.1	46
89	Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theoretical Population Biology, 2006, 69, 13-33.	0.5	45
90	Bayesian state-space modeling of metapopulation dynamics in the Glanville fritillary butterfly. Ecological Monographs, 2011, 81, 581-598.	2.4	45

#	Article	IF	CITATIONS
91	BRINGING HABITAT INFORMATION INTO STATISTICAL TESTS OF LOCAL ADAPTATION IN QUANTITATIVE TRAITS: A CASE STUDY OF NINE-SPINED STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2014, 68, 559-568.	1.1	45
92	Spore sensitivity to sunlight and freezing can restrict dispersal in woodâ€decay fungi. Ecology and Evolution, 2015, 5, 3312-3326.	0.8	44
93	Competition as a structuring force in leaf miner communities. Oikos, 2009, 118, 809-818.	1.2	43
94	Species traits and inertial deposition of fungal spores. Journal of Aerosol Science, 2013, 61, 81-98.	1.8	42
95	Detecting parasite associations within multi-species host and parasite communities. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191109.	1.2	42
96	The Effective Size of a Metapopulation Living in a Heterogeneous Patch Network. American Naturalist, 2002, 160, 612-628.	1.0	41
97	Statistical ecology comes of age. Biology Letters, 2014, 10, 20140698.	1.0	40
98	Discovery of longâ€distance gamete dispersal in a lichenâ€forming ascomycete. New Phytologist, 2017, 216, 216-226.	3.5	40
99	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	2.7	40
100	Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes. Theoretical Population Biology, 2008, 74, 209-225.	0.5	39
101	Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Functional Ecology, 2019, 33, 372-387.	1.7	39
102	Predator–vole interactions in northern Europe: the role of small mustelids revised. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142119.	1.2	37
103	Fragmented tropical forests lose mutualistic plant–animal interactions. Diversity and Distributions, 2020, 26, 154-168.	1.9	37
104	Phenological shifts of abiotic events, producers and consumers across a continent. Nature Climate Change, 2021, 11, 241-248.	8.1	37
105	The quasistationary distribution of the stochastic logistic model. Journal of Applied Probability, 2001, 38, 898-907.	0.4	36
106	The quasistationary distribution of the stochastic logistic model. Journal of Applied Probability, 2001, 38, 898-907.	0.4	35
107	The species-area relationship derived from species-specific incidence functions. Ecology Letters, 2003, 6, 903-909.	3.0	35
108	Analytical and numerical tools for diffusion-based movement models. Theoretical Population Biology, 2008, 73, 198-211.	0.5	35

#	Article	IF	CITATIONS
109	Animal Sound Identifier (<scp>ASI</scp>): software for automated identification of vocal animals. Ecology Letters, 2018, 21, 1244-1254.	3.0	35
110	Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time?. Fungal Ecology, 2016, 20, 225-232.	0.7	34
111	At which spatial and temporal scales can fungi indicate habitat connectivity?. Ecological Indicators, 2018, 91, 138-148.	2.6	34
112	Spatioâ€ŧemporal patterns of habitat use in voles and shrews modified by density, season and predators. Journal of Animal Ecology, 2012, 81, 747-755.	1.3	33
113	Large-Scale Habitat Corridors for Biodiversity Conservation: A Forest Corridor in Madagascar. PLoS ONE, 2015, 10, e0132126.	1.1	33
114	Long-term persistence of species and the SLOSS problem. Journal of Theoretical Biology, 2002, 218, 419-33.	0.8	31
115	Design matters: An evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. Forest Ecology and Management, 2017, 401, 8-16.	1.4	30
116	Can we predict the expansion rate of a translocated butterfly population based on a priori estimated movement rates?. Biological Conservation, 2017, 215, 189-195.	1.9	29
117	Accounting for environmental variation in coâ€occurrence modelling reveals the importance of positive interactions in rootâ€associated fungal communities. Molecular Ecology, 2020, 29, 2736-2746.	2.0	29
118	The spatial scale of local adaptation in a stochastic environment. Ecology Letters, 2016, 19, 780-788.	3.0	28
119	Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity, 2020, 124, 77-92.	1.2	28
120	Forest and connectivity loss drive changes in movement behavior of bird species. Ecography, 2020, 43, 1203-1214.	2.1	28
121	Fungal Communities Are Important Determinants of Bacterial Community Composition in Deadwood. MSystems, 2021, 6, .	1.7	28
122	Some like it hot: microclimatic variation affects the abundance and movements of a critically endangered dung beetle. Insect Conservation and Diversity, 2009, 2, 232-241.	1.4	27
123	Frontiers in Metapopulation Biology: The Legacy of Ilkka Hanski. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 231-252.	3.8	27
124	Soil fertility in boreal forest relates to rootâ€driven nitrogen retention and carbon sequestration in the mor layer. New Phytologist, 2019, 221, 1492-1502.	3.5	27
125	A statistical framework for inferring the influence of conspecifics on movement behaviour. Methods in Ecology and Evolution, 2014, 5, 183-189.	2.2	26
126	A molecularâ€based identification resource for the arthropods of Finland. Molecular Ecology Resources, 2022, 22, 803-822.	2.2	26

#	Article	IF	CITATIONS
127	Can the cause of aggregation be inferred from species distributions?. Oikos, 2007, 116, 4-16.	1.2	25
128	Spatial population structure of a specialist leafâ€mining moth. Journal of Animal Ecology, 2008, 77, 757-767.	1.3	25
129	Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31249-31258.	3.3	25
130	Monitoring Fungal Communities With the Global Spore Sampling Project. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	25
131	Extending Joint Models in Community Ecology: A Response to Beissinger et al Trends in Ecology and Evolution, 2016, 31, 737-738.	4.2	24
132	Responses of generalist and specialist species to fragmented landscapes. Theoretical Population Biology, 2018, 124, 31-40.	0.5	24
133	Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Ecography, 2021, 44, 885-896.	2.1	24
134	Evolution, plasticity and evolving plasticity of phenology in theÂtree species <i>Alnus glutinosa</i> . Journal of Evolutionary Biology, 2016, 29, 253-264.	0.8	23
135	Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales. PLoS ONE, 2014, 9, e103416.	1.1	23
136	Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genetics, 2019, 15, e1008512.	1.5	22
137	Joint species movement modeling: how do traits influence movements?. Ecology, 2019, 100, e02622.	1.5	22
138	Land-use changes lead to functional loss of terrestrial mammals in a Neotropical rainforest. Perspectives in Ecology and Conservation, 2021, 19, 161-170.	1.0	22
139	Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 2020, 7, 47.	2.4	22
140	AGE-DEPENDENT SURVIVAL ANALYZED WITH BAYESIAN MODELS OF MARK–RECAPTURE DATA. Ecology, 2007, 88, 1970-1976.	1.5	21
141	Woodâ€inhabiting fungi with tight associations with other species have declined as a response to forest management. Oikos, 2017, 126, .	1.2	21
142	The microbiome of the <i>Melitaea cinxia</i> butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environmental Microbiology, 2019, 21, 4253-4269.	1.8	21
143	A unified framework for analysis of individual-based models in ecology and beyond. Nature Communications, 2019, 10, 4716.	5.8	21
144	Scaling up the effects of inbreeding depression from individuals to metapopulations. Journal of Animal Ecology, 2019, 88, 1202-1214.	1.3	21

#	Article	IF	CITATIONS
145	Temporal turnover of the soil microbiome composition is guildâ€specific. Ecology Letters, 2021, 24, 2726-2738.	3.0	21
146	Dispersal in the Glanville fritillary butterfly in fragmented versus continuous landscapes: comparison between three methods. Ecological Entomology, 2011, 36, 251-260.	1.1	20
147	Determining marine bioregions: A comparison of quantitative approaches. Methods in Ecology and Evolution, 2020, 11, 1258-1272.	2.2	20
148	Habitat destruction, habitat restoration and eigenvector–eigenvalue relations. Mathematical Biosciences, 2003, 181, 165-176.	0.9	19
149	Spatioâ€ŧemporal scaling of biodiversity in acoustic tropical bird communities. Ecography, 2019, 42, 1936-1947.	2.1	19
150	Predation on two vole species by a shared predator: antipredatory response and prey preference. Population Ecology, 2008, 50, 257-266.	0.7	17
151	Environmentally induced dispersalâ€related lifeâ€history syndrome in the tropical butterfly, <i>Bicyclus anynana</i> . Journal of Evolutionary Biology, 2012, 25, 2264-2275.	0.8	17
152	Habitat quality is more important than matrix quality for bird communities in protected areas. Ecology and Evolution, 2018, 8, 4019-4030.	0.8	17
153	The relative importance of local and regional processes to metapopulation dynamics. Journal of Animal Ecology, 2020, 89, 884-896.	1.3	16
154	Bioregions in Marine Environments: Combining Biological and Environmental Data for Management and Scientific Understanding. BioScience, 2020, 70, 48-59.	2.2	16
155	Frugivory Specialization in Birds and Fruit Chemistry Structure Mutualistic Networks across the Neotropics. American Naturalist, 2021, 197, 236-249.	1.0	16
156	Traits mediate niches and coâ€occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 2021, 48, 3145-3157.	1.4	16
157	Immigration-extinction dynamics of stochastic populations. Physical Review E, 2013, 88, 012124.	0.8	15
158	Bryophyte Species Richness on Retention Aspens Recovers in Time but Community Structure Does Not. PLoS ONE, 2014, 9, e93786.	1.1	15
159	Reintroduction of threatened fungal species via inoculation. Biological Conservation, 2016, 203, 120-124.	1.9	15
160	Assessing the dynamics of natural populations by fitting individualâ€based models with approximate Bayesian computation. Methods in Ecology and Evolution, 2018, 9, 1286-1295.	2.2	15
161	Long-term shifts in water quality show scale-dependent bioindicator responses across Russia – Insights from 40†year-long bioindicator monitoring program. Ecological Indicators, 2019, 98, 476-482.	2.6	15
162	Ten principles for conservation translocations of threatened wood-inhabiting fungi. Fungal Ecology, 2020, 44, 100919.	0.7	15

#	Article	IF	CITATIONS
163	Modelling dispersal with diffusion and habitat selection: Analytical results for highly fragmented landscapes. Ecological Modelling, 2009, 220, 1495-1505.	1.2	14
164	Size and genetic composition of the colonizing propagules in a butterfly metapopulation. Oikos, 2011, 120, 1357-1365.	1.2	14
165	â€~Strict', yet ineffective: legal protection of breeding sites and resting places fails with the <scp>S</scp> iberian flying squirrel. Animal Conservation, 2015, 18, 167-175.	1.5	14
166	Estimating seed and pollen dispersal kernels from genetic data demonstrates a high pollen dispersal capacity for an endangered palm species. American Journal of Botany, 2018, 105, 1802-1812.	0.8	14
167	Communities in high definition: Spatial and environmental factors shape the microâ€distribution of aquatic invertebrates. Freshwater Biology, 2020, 65, 2053-2065.	1.2	14
168	Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications, 2021, 12, 7282.	5.8	14
169	Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecology, 2020, 46, 100863.	0.7	13
170	Invasion rate of deer ked depends on spatiotemporal variation in host density. Bulletin of Entomological Research, 2014, 104, 314-322.	0.5	12
171	Choosy beetles: How host trees and southern boreal forest naturalness may determine dead wood beetle communities. Forest Ecology and Management, 2021, 487, 119023.	1.4	12
172	Hostâ€plant availability drives the spatiotemporal dynamics of interacting metapopulations across a fragmented landscape. Ecology, 2020, 101, e03186.	1.5	11
173	Higher host plant specialization of rootâ€essociated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecology and Evolution, 2020, 10, 8989-9002.	0.8	11
174	Does traitâ€based joint species distribution modelling reveal the signature of competition in stream macroinvertebrate communities?. Journal of Animal Ecology, 2021, 90, 1276-1287.	1.3	11
175	Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development. Ambio, 2016, 45, 831-840.	2.8	10
176	Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity. Movement Ecology, 2016, 4, 5.	1.3	10
177	Experimentally induced community assembly of polypores reveals the importance of both environmental filtering and assembly history. Fungal Ecology, 2019, 41, 137-146.	0.7	10
178	An h-p-n adaptive finite element scheme for shell problems. Advances in Engineering Software, 1996, 26, 201-207.	1.8	9
179	Biased movement at a boundary and conditional occupancy times for diffusion processes. Journal of Applied Probability, 2003, 40, 557-580.	0.4	9
180	Estimating interaction credit for trophic rewilding in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170435.	1.8	9

#	Article	IF	CITATIONS
181	Mathematical Tools for Planning Effective Intervention Scenarios for Sexually Transmitted Diseases. Sexually Transmitted Diseases, 2003, 30, 388-394.	0.8	8
182	Beyond metacommunity paradigms: habitat configuration, life history, and movement shape an herbivore community on oak. Ecology, 2015, 96, 3175-3185.	1.5	8
183	Red squirrels decline in abundance in the boreal forests of Finland and NW Russia. Ecography, 2018, 41, 1370-1379.	2.1	8
184	Data collected by fruit body―and DNAâ€based survey methods yield consistent speciesâ€ŧoâ€species association networks in woodâ€inhabiting fungal communities. Oikos, 2020, 129, 1833-1843.	1.2	8
185	Spatial synchrony is related to environmental change in Finnish moth communities. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200684.	1.2	8
186	Saproxylic beetle assemblages in recently dead Scots pines: How traits modulate species' response to forest management?. Forest Ecology and Management, 2020, 473, 118300.	1.4	8
187	Refining predictions of metacommunity dynamics by modeling species nonâ€independence. Ecology, 2020, 101, e03067.	1.5	8
188	PROTAX-Sound: A probabilistic framework for automated animal sound identification. PLoS ONE, 2017, 12, e0184048.	1.1	8
189	Hierarchical Metapopulation Dynamics of Two Aphid Species on a Shared Host Plant. American Naturalist, 2009, 174, 331-341.	1.0	7
190	Testing a mechanistic dispersal model against a dispersal experiment with a windâ€dispersed moss. Oikos, 2015, 124, 1232-1240.	1.2	7
191	Predicting fish community responses to environmental policy targets. Biodiversity and Conservation, 2021, 30, 1457-1478.	1.2	7
192	Effects of density, species interactions, and environmental stochasticity on the dynamics of British bird communities. Ecology, 2022, 103, e3731.	1.5	7
193	The Ghost of the Hawk: Top Predator Shaping Bird Communities in Space and Time. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
194	The Interplay between Immigration and Local Population Dynamics in Metapopulations. Annales Zoologici Fennici, 2017, 54, 113-121.	0.2	6
195	The dual role of rivers in facilitating or hindering movements of the false heath fritillary butterfly. Movement Ecology, 2015, 3, 4.	1.3	5
196	A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys. PLoS ONE, 2016, 11, e0162447.	1.1	5
197	Novel Insights into the Map Stage of True Navigation in Nonmigratory Wild Birds (Stone Curlews,) Tj ETQq1 1 ().784314 r 1.0	gBT ₅ /Overlock
198	A numerical approach to determine mutant invasion fitness and evolutionary singular strategies. Theoretical Population Biology, 2017, 115, 89-99.	0.5	5

#	Article	IF	CITATIONS
199	Structure and stability of genetic variance–covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the threeâ€spined stickleback. Molecular Ecology, 2017, 26, 5099-5113.	2.0	5
200	Detecting the influence of environmental covariates on animal movement: a semivariance approach. Methods in Ecology and Evolution, 2017, 8, 561-570.	2.2	5
201	Temporal sampling and abundance measurement influences support for occupancy–abundance relationships. Journal of Biogeography, 2019, 46, 2839-2849.	1.4	5
202	Movement of forestâ€dependent dung beetles through riparian buffers in Bornean oil palm plantations. Journal of Applied Ecology, 2022, 59, 238-250.	1.9	5
203	Contrasting Effects of Chronic Anthropogenic Disturbance on Activity and Species Richness of Insectivorous Bats in Neotropical Dry Forest. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	5
204	A General Approach to Model Movement in (Highly) Fragmented Patch Networks. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 393-412.	0.7	4
205	Dynamics of a host–parasitoid interaction clarified by modelling and DNA sequencing. Ecology Letters, 2020, 23, 851-859.	3.0	4
206	A general mathematical method for predicting spatio-temporal correlations emerging from agent-based models. Journal of the Royal Society Interface, 2020, 17, 20200655.	1.5	4
207	Spatial Memory Drives Foraging Strategies of Wolves, but in Highly Individual Ways. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
208	An Energy Method Approach to the Problem of Elastic Strip. SIAM Journal on Applied Mathematics, 1998, 58, 999-1021.	0.8	3
209	Convergence of fungal traits over time in natural and forestry-fragmented patches. Biological Conservation, 2020, 251, 108789.	1.9	3
210	Exploring the dimensions of metapopulation persistence: a comparison of structural and temporal measures. Theoretical Ecology, 2021, 14, 269-278.	0.4	3
211	Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology, 2021, 90, 1217-1227.	1.3	3
212	Co-occurrences of tropical trees in eastern South America: disentangling abiotic and biotic forces. Plant Ecology, 2021, 222, 791-806.	0.7	3
213	Breeding system and reproductive skew in a highly polygynous ant population. Insectes Sociaux, 2008, 55, 347-354.	0.7	2
214	Metapopulation Models. , 2019, , 136-144.		2
215	Movement syndromes of a Neotropical frugivorous bat inhabiting heterogeneous landscapes in Brazil. Movement Ecology, 2021, 9, 35.	1.3	2
216	Bayesian Inference in HMSC. , 2020, , 184-216.		2

#	Article	IF	CITATIONS
217	Artificial irrigation ponds and sea coast as foraging habitat for larids breeding in protected wetlands. Marine and Freshwater Research, 2015, 66, 831.	0.7	1
218	Single-Species Distribution Modelling. , 2020, , 53-103.		1
219	Mathematical and simulation methods for deriving extinction thresholds in spatial and stochastic models of interacting agents. Methods in Ecology and Evolution, 2021, 12, 162-169.	2.2	1
220	Effects of a mobile disturbance pattern on dynamic patch networks and metapopulation persistence. Ecological Modelling, 2021, 460, 109738.	1.2	1
221	An Overview of the Structure and Use of HMSC. , 2020, , 39-50.		1
222	Species distribution models. , 2019, , 277-298.		1
223	Joint Species Distribution Modelling. , 2020, , 142-183.		1
224	Genetics and evolutionary ecology. , 2016, , 168-214.		0
225	Joint Species Movement Modeling: How Do Traits Influence Movements?. Bulletin of the Ecological Society of America, 2019, 100, e01511.	0.2	0
226	Refining Predictions of Metacommunity Dynamics by Modeling Species Nonâ€independence. Bulletin of the Ecological Society of America, 2020, 101, e01717.	0.2	0
227	llkka Aulis Hanski. 14 February 1953—10 May 2016. Biographical Memoirs of Fellows of the Royal Society, 2020, 68, 231-250.	0.1	0
228	Historical Development of Community Ecology. , 2020, , 3-18.		0
229	Typical Data Collected by Community Ecologists. , 2020, , 19-29.		0
230	Typical Statistical Methods Applied by Community Ecologists. , 2020, , 30-38.		0
231	Joint Species Distribution Modelling. , 2020, , 104-141.		0
232	Evaluating Model Fit and Selecting among Multiple Models. , 2020, , 217-252.		0
233	Linking HMSC Back to Community Assembly Processes. , 2020, , 255-299.		0
234	Illustration of HMSC Analyses. , 2020, , 300-336.		0

0

#	Article	IF	CITATIONS
235	Bayesian Modeling of Sequential Discoveries. Journal of the American Statistical Association, 2023, 118, 2521-2532.	1.8	0

236 Benchmark Finite Element Analysis of Cylindrical Shells. , 0, , .