List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2274509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of LiNi0.5Mn1.5O4 cathode materials by using different-sized Mn3O4 nanocrystals as precursors. Journal of Solid State Electrochemistry, 2022, 26, 1359-1368.	2.5	3
2	Nickel Colloidal Superparticles: Microemulsion-Based Self-Assembly Preparation and Their Transition from Room-Temperature Superparamagnetism to Ferromagnetism. Journal of Physical Chemistry C, 2021, 125, 5880-5889.	3.1	6
3	Monodisperse core-shell Li4Ti5O12@C submicron particles as high-rate anode materials for lithium-ion batteries. Electrochimica Acta, 2021, 390, 138874.	5.2	11
4	Cu@Ni core–shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films. Nanotechnology, 2020, 31, 355601.	2.6	19
5	Preparation of porous Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes for high-capacity lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155152.	5.5	15
6	MoSe2-Ni3Se4 Hybrid Nanoelectrocatalysts and Their Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction. Nanoscale Research Letters, 2020, 15, 132.	5.7	19
7	Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode. Science China Materials, 2019, 62, 1374-1384.	6.3	58
8	Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries. Journal of Power Sources, 2019, 418, 122-129.	7.8	40
9	Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C ₃ N ₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 5651-5660.	8.0	208
10	From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells. Journal of Materials Chemistry A, 2018, 6, 5143-5155.	10.3	25
11	Photocatalysis: Co2 P Nanorods as an Efficient Cocatalyst Decorated Porous g-C3 N4 Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation (Part. Part. Syst. Charact. 1/2018). Particle and Particle Systems Characterization, 2018, 35, 1870003.	2.3	4
12	Co ₂ P Nanorods as an Efficient Cocatalyst Decorated Porous gâ€C ₃ N ₄ Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation. Particle and Particle Systems Characterization, 2018, 35, 1700251.	2.3	69
13	Influence of surface and interface modification on the electrical transport behaviors in Co@Cu nanocomposite films. Journal of Magnetism and Magnetic Materials, 2018, 460, 34-40.	2.3	1
14	Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Applied Catalysis B: Environmental, 2018, 233, 26-34.	20.2	147
15	Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Applied Catalysis B: Environmental, 2018, 221, 47-55.	20.2	251
16	Tungsten hexacarbonyl-induced growth of nickel nanorods and nanocubes. Materials Letters, 2018, 229, 340-343.	2.6	5
17	Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO ₃ /C Composite in X-Band. ACS Applied Materials & Interfaces, 2017, 9, 7601-7610.	8.0	123
18	Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals. Materials Chemistry and Physics, 2017, 192, 339-348.	4.0	35

#	Article	IF	CITATIONS
19	Colloidal synthesis of MoSe 2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochimica Acta, 2017, 231, 69-76.	5.2	49
20	Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	5
21	Electrical transport properties in Co nanocluster-assembled granular film. Journal of Applied Physics, 2017, 121, .	2.5	6
22	Hierarchical ZnIn ₂ S ₄ /MoSe ₂ Nanoarchitectures for Efficient Nobleâ€Metalâ€Free Photocatalytic Hydrogen Evolution under Visible Light. ChemSusChem, 2017, 10, 4624-4631.	6.8	140
23	Facile preparation and microwave absorption properties of porous Co/CoO microrods. Journal of Alloys and Compounds, 2017, 721, 411-418.	5.5	52
24	Ni ₁₂ P ₅ nanoparticles embedded into porous g-C ₃ N ₄ nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H ₂ production under visible light. Journal of Materials Chemistry A, 2017, 5, 16171-16178.	10.3	183
25	Controllable synthesis of Cu–Ni core–shell nanoparticles and nanowires with tunable magnetic properties. Chemical Communications, 2016, 52, 6918-6921.	4.1	30
26	Colloidal synthesis of Cu–ZnO and Cu@CuNi–ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties. Nanoscale, 2016, 8, 11602-11610.	5.6	15
27	Phase-controlled synthesis and magnetic properties of cubic and hexagonal CoO nanocrystals. Nanotechnology, 2016, 27, 455602.	2.6	17
28	Solution synthesis of triangular and hexagonal nickel nanosheets with the aid of tungsten hexacarbonyl. CrystEngComm, 2016, 18, 1295-1301.	2.6	22
29	Synthesis of Ni–Au–ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity. Nanoscale, 2015, 7, 11371-11378.	5.6	17
30	Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals. Nanotechnology, 2015, 26, 415602.	2.6	8
31	Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. Journal of Power Sources, 2015, 295, 329-335.	7.8	111
32	Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 11-18.	4.7	7
33	Preparation of multi-branched Au–ZnO hybrid nanocrystals on graphene for enhanced photocatalytic performance. Materials Letters, 2015, 161, 379-383.	2.6	15
34	Effect of Component Distribution and Nanoporosity in CuPt Nanotubes on Electrocatalysis of the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 486-494.	6.8	28
35	Seedâ€Induced Growth of Flowerâ€Like Au–Ni–ZnO Metal–Semiconductor Hybrid Nanocrystals for Photocatalytic Applications. Small, 2015, 11, 1460-1469.	10.0	55
36	Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods. Nanotechnology, 2014, 25, 035707.	2.6	32

#	Article	IF	CITATIONS
37	Au–ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties. Nanoscale, 2014, 6, 874-881.	5.6	160
38	A facile solution approach for the preparation of Ag@Ni core–shell nanocubes. Materials Letters, 2014, 116, 239-242.	2.6	7
39	Magnetic metal phosphide nanorods as effective hydrogen-evolution electrocatalysts. International Journal of Hydrogen Energy, 2014, 39, 18919-18928.	7.1	62
40	Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices. Materials Chemistry and Physics, 2014, 147, 604-610.	4.0	19
41	Shape-Selective Formation of Monodisperse Copper Nanospheres and Nanocubes via Disproportionation Reaction Route and Their Optical Properties. Journal of Physical Chemistry C, 2014, 118, 9801-9808.	3.1	84
42	Electron transport properties of magnetic granular films. Science China: Physics, Mechanics and Astronomy, 2013, 56, 15-28.	5.1	25
43	Copper Nanowires as Fully Transparent Conductive Electrodes. Scientific Reports, 2013, 3, 2323.	3.3	310
44	Injection synthesis of Ni–Cu@Au–Cu nanowires with tunable magnetic and plasmonic properties. Chemical Communications, 2013, 49, 11545.	4.1	11
45	Solution preparation of alloy core–shell nanoparticles: The case of Ni–Cu@Au–Cu nanoparticles. Materials Letters, 2013, 99, 180-183.	2.6	4
46	First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Advances, 2013, 3, 1050-1054.	3.6	84
47	Facile synthesis of Cu and Cu@Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale, 2013, 5, 2394.	5.6	108
48	Gas-phase synthesis and magnetism of HfO2 nanoclusters. European Physical Journal D, 2013, 67, 1.	1.3	2
49	Transition from paramagnetism to ferromagnetism in HfO2 nanorods. Journal of Applied Physics, 2013, 113, 076102.	2.5	7
50	Template-Free Synthesis of Amorphous Double-Shelled Zinc–Cobalt Citrate Hollow Microspheres and Their Transformation to Crystalline ZnCo ₂ O ₄ Microspheres. ACS Applied Materials & Interfaces, 2013, 5, 5508-5517.	8.0	114
51	A facile approach to fabrication of well-dispersed NiO–ZnO composite hollow microspheres. RSC Advances, 2013, 3, 24430-24439.	3.6	14
52	Preparation of Bimetallic Core-shell Nanoparticles with Magnetically Recyclable and High Catalytic Abilities. Procedia Engineering, 2012, 36, 504-509.	1.2	5
53	Magnetic Properties of Oxygen-doping Fe-Co-based Nanocrystalline Alloy Films for High Frequency Application. Procedia Engineering, 2012, 36, 516-520.	1.2	1
54	CoO nanocrystals as a highly active catalyst for the generation of hydrogen from hydrolysis of sodium borohydride. Journal of Power Sources, 2012, 220, 391-398.	7.8	67

#	Article	IF	CITATIONS
55	One-pot synthesis of hexagonal and triangular nickel–copper alloy nanoplates and their magnetic and catalytic properties. Journal of Materials Chemistry, 2012, 22, 8336.	6.7	66
56	Structure, optical and magnetic properties of Ni@Au and Au@Ni nanoparticles synthesized via non-aqueous approaches. Journal of Materials Chemistry, 2012, 22, 2757-2765.	6.7	70
57	Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen. Nanotechnology, 2011, 22, 195604.	2.6	98
58	High Frequency Characteristics of Fe65Co35 Alloy Cluster-Assembled Films Prepared by Energetic Cluster Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 11119-11123.	0.9	4
59	Blue-luminescent hafnia nanoclusters synthesized by plasma gas-phase method. Materials Chemistry and Physics, 2011, 130, 823-826.	4.0	10
60	Preparation of Anisotropic Transition Metal Phosphide Nanocrystals: The Case of Nickel Phosphide Nanoplatelets, Nanorods, and Nanowires. Journal of Nanoscience and Nanotechnology, 2010, 10, 5175-5182.	0.9	4
61	High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films. Science China Technological Sciences, 2010, 53, 1501-1506.	4.0	5
62	A Nonaqueous Approach to the Preparation of Iron Phosphide Nanowires. Nanoscale Research Letters, 2010, 5, 786-790.	5.7	11
63	High frequency characteristics of Fe <inf>65</inf> Co <inf>35</inf> alloy cluster-assembled films prepared by energetic cluster deposition. , 2010, , .		0
64	Chemical Synthesis of Monodisperse Fe–Ni Nanoparticles via a Diffusion-Based Approach. Journal of Nanoscience and Nanotechnology, 2010, 10, 3053-3059.	0.9	7
65	Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films. Journal of Alloys and Compounds, 2010, 508, 370-374.	5.5	72
66	Size- and Structure-Controlled Synthesis and Characterization of Nickel Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 5157-5163.	0.9	22
67	Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route. Materials Chemistry and Physics, 2009, 113, 412-416.	4.0	65
68	Solution-phase synthesis of nickel phosphide single-crystalline nanowires. Journal of Crystal Growth, 2009, 311, 1229-1233.	1.5	59
69	Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. Journal of Alloys and Compounds, 2009, 476, 864-868.	5.5	60
70	Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology, 2007, 18, 505703.	2.6	187
71	Ultrafine ash aerosols from coal combustion: Characterization and health effects. Proceedings of the Combustion Institute, 2007, 31, 1929-1937.	3.9	115
72	Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmospheric Environment, 2006, 40, 651-663.	4.1	82

YUANZHI CHEN

#	Article	IF	CITATIONS
73	Characterization of Ambient Airborne Particles by Energy-Filtered Transmission Electron Microscopy. Aerosol Science and Technology, 2005, 39, 509-518.	3.1	19
74	Emissions of Chromium, Copper, Arsenic, and PCDDs/Fs from Open Burning of CCA-Treated Wood. Environmental Science & Technology, 2005, 39, 8865-8876.	10.0	59
75	Transmission Electron Microscopy Investigation of Ultrafine Coal Fly Ash Particles. Environmental Science & Technology, 2005, 39, 1144-1151.	10.0	108
76	Electron Microscopy Investigation of Carbonaceous Particulate Matter Generated by Combustion of Fossil Fuels. Energy & amp; Fuels, 2005, 19, 1644-1651.	5.1	101
77	Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Processing Technology, 2004, 85, 743-761.	7.2	76
78	Measurement of fine particulate matter using electron microscopy techniques. Fuel Processing Technology, 2004, 85, 763-779.	7.2	59
79	Investigation of the Microcharacteristics of PM2.5in Residual Oil Fly Ash by Analytical Transmission Electron Microscopy, Environmental Science & amp: Technology, 2004, 38, 6553-6560.	10.0	80