Alejandro Sevilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2274254/publications.pdf

Version: 2024-02-01

47 papers

1,273 citations

20 h-index 35 g-index

47 all docs

47 docs citations

47 times ranked

1025 citing authors

#	Article	IF	CITATIONS
1	Superhydrophobic substrates allow the generation of giant quasi-static bubbles. Journal of Fluid Mechanics, 2021, 912, .	3.4	6
2	Non-linear dynamics and self-similarity in the rupture of ultra-thin viscoelastic liquid coatings. Soft Matter, 2021, 17, 4363-4374.	2.7	1
3	Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885, .	3.4	19
4	Natural break-up and satellite formation regimes of surfactant-laden liquid threads. Journal of Fluid Mechanics, 2020, 883, .	3.4	23
5	Bubble pressure requirements to control the bubbling process in forced co-axial air-water jets. International Journal of Multiphase Flow, 2020, 133, 103467.	3.4	0
6	The role of inertia in the rupture of ultrathin liquid films. Physics of Fluids, 2020, 32, 112114.	4.0	7
7	The effect of wall slip on the dewetting of ultrathin films on solid substrates: Linear instability and second-order lubrication theory. Physics of Fluids, 2020, 32, .	4.0	9
8	Universal Thinning of Liquid Filaments under Dominant Surface Forces. Physical Review Letters, 2020, 125, 114502.	7.8	12
9	On the flow separation mechanism in the inverse Leidenfrost regime. Journal of Fluid Mechanics, 2020, 897, .	3.4	4
10	Bubble formation regimes in forced co-axial air-water jets. International Journal of Multiphase Flow, 2020, 128, 103296.	3.4	6
11	Stokes theory of thin-film rupture. Physical Review Fluids, 2020, 5, .	2.5	17
12	Dripping dynamics and transitions at high Bond numbers. International Journal of Multiphase Flow, 2018, 104, 206-213.	3.4	20
13	The nonlinear states of viscous capillary jets confined in the axial direction. Journal of Fluid Mechanics, 2018, 834, 335-358.	3.4	5
14	One-dimensional modelling of the thinning of particulate suspensions near pinch-off. International Journal of Multiphase Flow, 2018, 108, 202-210.	3.4	6
15	Temporal stability of free liquid threads with surface viscoelasticity. Journal of Fluid Mechanics, 2018, 846, 877-901.	3.4	26
16	Global instability of low-density jets. Journal of Fluid Mechanics, 2017, 820, 187-207.	3.4	33
17	Controlled formation of bubbles in a planar co-flow configuration. International Journal of Multiphase Flow, 2017, 89, 69-80.	3.4	5
18	Diffusion-flame flickering as a hydrodynamic global mode. Journal of Fluid Mechanics, 2016, 798, 997-1014.	3.4	23

#	Article	IF	CITATIONS
19	Numerical simulation of axisymmetric drop formation using a coupled level set and volume of fluid method. International Journal of Multiphase Flow, 2016, 84, 54-65.	3.4	30
20	The necking time of gas bubbles in liquids of arbitrary viscosity. Physics of Fluids, 2016, 28, .	4.0	9
21	Modeling of the bubbling process in a planar co-flow configuration. International Journal of Multiphase Flow, 2016, 82, 86-92.	3.4	3
22	Modal Instability Analysis of Light Jets. Procedia IUTAM, 2015, 14, 137-140.	1.2	1
23	Generation of Microbubbles with Applications to Industry and Medicine. Annual Review of Fluid Mechanics, 2015, 47, 405-429.	25.0	121
24	Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. Journal of Fluid Mechanics, 2014, 738, 335-357.	3.4	41
25	Bubble formation in a planar water–air–water jet: Effects of the nozzle geometry and the injection conditions. International Journal of Multiphase Flow, 2014, 65, 38-50.	3.4	6
26	Global stability analysis of the axisymmetric wake past a spinning bullet-shaped body. Journal of Fluid Mechanics, 2014, 748, 302-327.	3.4	14
27	On the thinnest steady threads obtained by gravitational stretching of capillary jets. Journal of Fluid Mechanics, 2013, 729, 471-483.	3.4	29
28	Laminar flow past a spinning bullet-shaped body at moderate angular velocities. Journal of Fluids and Structures, 2013, 43, 200-219.	3.4	12
29	Experimental and numerical study of the periodic bubbling regime in planar co-flowing air–water sheets. International Journal of Multiphase Flow, 2013, 50, 106-119.	3.4	11
30	Viscous stability analysis of jets with discontinuous base profiles. European Journal of Mechanics, B/Fluids, 2012, 36, 128-138.	2.5	1
31	The structure of the absolutely unstable regions in the near field of low-density jets. Journal of Fluid Mechanics, 2012, 713, 123-149.	3.4	20
32	Bubbling and jetting regimes in planar coflowing air–water sheets. Journal of Fluid Mechanics, 2011, 682, 519-542.	3.4	12
33	How Dr. Malcom M. Cross may have tackled the development of "An apparent viscosity function for shear thickening fluidsâ€. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1421-1424.	2.4	58
34	The effect of viscous relaxation on the spatiotemporal stability of capillary jets. Journal of Fluid Mechanics, 2011, 684, 204-226.	3.4	17
35	Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. Journal of Fluid Mechanics, 2011, 676, 110-144.	3.4	69
36	An apparent viscosity function for shear thickening fluids. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 321-325.	2.4	125

3

ALEJANDRO SEVILLA

#	Article	IF	CITATIONS
37	The effect of liquid viscosity on bubble pinch-off. Physics of Fluids, 2009, 21, .	4.0	27
38	Global mode analysis of axisymmetric bluff-body wakes: Stabilization by base bleed. Physics of Fluids, 2009, 21, .	4.0	27
39	Absolute instability of light jets emerging from circular injector tubes. Physics of Fluids, 2008, 20, .	4.0	20
40	Axisymmetric bubble collapse in a quiescent liquid pool. II. Experimental study. Physics of Fluids, 2008, 20, .	4.0	47
41	Bubbling in a co-flow at high Reynolds numbers. Physics of Fluids, 2007, 19, 077102.	4.0	41
42	A note on the stabilization of bluff-body wakes by low density base bleed. Physics of Fluids, 2006, 18, 098102.	4.0	8
43	Transition from bubbling to jetting in a coaxial air–water jet. Physics of Fluids, 2005, 17, 018105.	4.0	52
44	Axisymmetric Bubble Pinch-Off at High Reynolds Numbers. Physical Review Letters, 2005, 95, 194501.	7.8	113
45	Bubble formation in a coflowing air–water stream. Journal of Fluid Mechanics, 2005, 530, 181-195.	3.4	45
46	Vortex shedding in high Reynolds number axisymmetric bluff-body wakes: Local linear instability and global bleed control. Physics of Fluids, 2004, 16, 3460-3469.	4.0	61
47	The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Physics of Fluids, 2002, 14, 3028-3038.	4.0	31