Wataru Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinated Regulation and Complex Formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, Chloroplastic FtsH Metalloproteases Involved in the Repair Cycle of Photosystem II in Arabidopsis Thylakoid Membranes. Plant Cell, 2003, 15, 2843-2855.	6.6	276
2	PROTEIN DEGRADATION MACHINERIES IN PLASTIDS. Annual Review of Plant Biology, 2006, 57, 599-621.	18.7	202
3	Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 4967-4983.	6.6	195
4	The Variegated Mutants Lacking Chloroplastic FtsHs Are Defective in D1 Degradation and Accumulate Reactive Oxygen Species. Plant Physiology, 2009, 151, 1790-1801.	4.8	189
5	TheVAR1locus ofArabidopsisencodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes To Cells, 2002, 7, 769-780.	1.2	185
6	The YELLOW VARIEGATED (VAR2) Locus Encodes a Homologue of FtsH, an ATP-Dependent Protease in Arabidopsis. Plant and Cell Physiology, 2000, 41, 1334-1346.	3.1	184
7	Widespread Endogenization of Genome Sequences of Non-Retroviral RNA Viruses into Plant Genomes. PLoS Pathogens, 2011, 7, e1002146.	4.7	173
8	Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 2008, 228, 1043-1054.	3.2	160
9	The Balance between Protein Synthesis and Degradation in Chloroplasts Determines Leaf Variegation in Arabidopsis yellow variegated Mutants. Plant Cell, 2007, 19, 1313-1328.	6.6	149
10	Cooperative D1 Degradation in the Photosystem II Repair Mediated by Chloroplastic Proteases in Arabidopsis Â. Plant Physiology, 2012, 159, 1428-1439.	4.8	147
11	Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator Plant Cell, 1996, 8, 1377-1390.	6.6	135
12	Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance. The Arabidopsis Book, 2008, 6, e0110.	0.5	129
13	Functional divergence of the TFL1 -like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes To Cells, 2001, 6, 327-336.	1.2	128
14	Protein Quality Control in Chloroplasts: A Current Model of D1 Protein Degradation in the Photosystem II Repair Cycle. Journal of Biochemistry, 2009, 146, 463-469.	1.7	127
15	Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nature Plants, 2015, 1, 15035.	9.3	118
16	Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. Plant Physiology, 2016, 171, 2280-2293.	4.8	118
17	The Purple leaf (PI) Locus of Rice: the Plw Allele has a Complex Organization and Includes Two Genes Encoding Basic Helix-Loop-Helix Proteins Involved in Anthocyanin Biosynthesis. Plant and Cell Physiology, 2001, 42, 982-991.	3.1	117
18	FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. Frontiers in Plant Science, 2018, 9, 855.	3.6	117

#	Article	IF	CITATIONS
19	In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 497-501.	7.1	114
20	Leaf-variegated mutations and their responsible genes in Arabidopsis thaliana Genes and Genetic Systems, 2003, 78, 1-9.	0.7	114
21	Essential Role of VIPP1 in Chloroplast Envelope Maintenance in <i>Arabidopsis</i> Â. Plant Cell, 2012, 24, 3695-3707.	6.6	107
22	White Leaf Sectors in yellow variegated2 Are Formed by Viable Cells with Undifferentiated Plastids. Plant Physiology, 2007, 144, 952-960.	4.8	104
23	<i>NYC4</i> , the rice ortholog of Arabidopsis <i>THF1</i> , is involved in the degradation of chlorophyll – protein complexes during leaf senescence. Plant Journal, 2013, 74, 652-662.	5.7	98
24	Amyloplast-Localized SUBSTANDARD STARCH GRAIN4 Protein Influences the Size of Starch Grains in Rice Endosperm Â. Plant Physiology, 2014, 164, 623-636.	4.8	98
25	Selective Elimination of Membrane-Damaged Chloroplasts via Microautophagy. Plant Physiology, 2018, 177, 1007-1026.	4.8	91
26	Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress Genes and Genetic Systems, 1997, 72, 311-316.	0.7	90
27	Essentials of Proteolytic Machineries in Chloroplasts. Molecular Plant, 2017, 10, 4-19.	8.3	90
28	Function of the Chlamydomonas reinhardtii petD 5' untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant Journal, 1994, 6, 503-512.	5.7	89
29	<i>Arabidopsis</i> ELONGATED MITOCHONDRIA1 Is Required for Localization of DYNAMIN-RELATED PROTEIN3A to Mitochondrial Fission Sites. Plant Cell, 2008, 20, 1555-1566.	6.6	89
30	The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under shortâ€day photoperiod. Plant Journal, 2009, 59, 685-699.	5.7	80
31	A mutation of theCRUMPLED LEAFgene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division inArabidopsis. Plant Journal, 2004, 38, 448-459.	5.7	79
32	A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11014-11019.	7.1	79
33	Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 2021, 184, 3643-3659.e23.	28.9	76
34	Activation of the heterotrimeric G protein αâ€subunit GPA1 suppresses the ftshâ€mediated inhibition of chloroplast development in Arabidopsis. Plant Journal, 2009, 58, 1041-1053.	5.7	73
35	A Rapid, Direct Observation Method to Isolate Mutants with Defects in Starch Grain Morphology in Rice. Plant and Cell Physiology, 2010, 51, 728-741.	3.1	69
36	Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Molecular Biology, 1998, 38, 565-576.	3.9	68

#	Article	IF	CITATIONS
37	An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2098-2113.	6.6	67
38	Influence of Chloroplastic Photo-Oxidative Stress on Mitochondrial Alternative Oxidase Capacity and Respiratory Properties: A Case Study with Arabidopsis yellow variegated 2. Plant and Cell Physiology, 2008, 49, 592-603.	3.1	66
39	New Insights into the Types and Function of Proteases in Plastids. International Review of Cell and Molecular Biology, 2010, 280, 185-218.	3.2	66
40	Arrested Differentiation of Proplastids into Chloroplasts in Variegated Leaves Characterized by Plastid Ultrastructure and Nucleoid Morphology. Plant and Cell Physiology, 2009, 50, 2069-2083.	3.1	62
41	Identification and Characterization of High Molecular Weight Complexes Formed by Matrix AAA Proteases and Prohibitins in Mitochondria of Arabidopsis thaliana. Journal of Biological Chemistry, 2010, 285, 12512-12521.	3.4	62
42	Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm. Plant Physiology, 2016, 170, 1445-1459.	4.8	61
43	Multiple Intracellular Locations of Lon Protease in Arabidopsis: Evidence for the Localization of AtLon4 to Chloroplasts. Plant and Cell Physiology, 2007, 48, 881-885.	3.1	60
44	Phosphorylation of photosystem <scp>II</scp> core proteins prevents undesirable cleavage of <scp>D</scp> 1 and contributes to the fineâ€ŧuned repair of photosystem <scp>II</scp> . Plant Journal, 2014, 79, 312-321.	5.7	60
45	Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. Journal of Experimental Botany, 2014, 65, 3835-3843.	4.8	58
46	The FtsH Protease Heterocomplex in <i>Arabidopsis</i> : Dispensability of Type-B Protease Activity for Proper Chloroplast Development. Plant Cell, 2010, 22, 3710-3725.	6.6	57
47	Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. Plant and Cell Physiology, 2018, 59, 1120-1127.	3.1	56
48	A Conserved, Mg2+-Dependent Exonuclease Degrades Organelle DNA during <i>Arabidopsis</i> Pollen Development Â. Plant Cell, 2011, 23, 1608-1624.	6.6	53
49	Vegetative and Sperm Cell-Specific Aquaporins of Arabidopsis Highlight the Vacuolar Equipment of Pollen and Contribute to Plant Reproduction Â. Plant Physiology, 2014, 164, 1697-1706.	4.8	50
50	VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress. Plant Physiology, 2016, 171, 1983-1995.	4.8	50
51	The Model Plant Medicago truncatula Exhibits Biparental Plastid Inheritance. Plant and Cell Physiology, 2008, 49, 81-91.	3.1	46
52	Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated2: responses to oxidative and other stresses in white sectors. Journal of Experimental Botany, 2010, 61, 2433-2445.	4.8	46
53	Mitochondrial Dynamics in Plant Male Gametophyte Visualized by Fluorescent Live Imaging. Plant and Cell Physiology, 2008, 49, 1074-1083.	3.1	44
54	Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart. Plant Molecular Biology, 2008, 68, 159-171.	3.9	43

#	Article	IF	CITATIONS
55	FtsH proteases in chloroplasts and cyanobacteria. Physiologia Plantarum, 2005, 123, 386-390.	5.2	41
56	The Photosystem II Repair Cycle Requires FtsH Turnover through the EngA GTPase. Plant Physiology, 2018, 178, 596-611.	4.8	41
57	lon gradients in xylem exudate and guttation fluid related to tissue ion levels along primary leaves of barley. Plant, Cell and Environment, 2013, 36, 1826-1837.	5.7	39
58	D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. Photosynthesis Research, 2015, 126, 409-416.	2.9	39
59	Mitochondrial Localization of AtOXA1, an Arabidopsis Homologue of Yeast Oxa1p Involved in the Insertion and Assembly of Protein Complexes in Mitochondrial Inner Membrane. Plant and Cell Physiology, 2000, 41, 1157-1163.	3.1	38
60	Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. Nature Plants, 2018, 4, 1044-1055.	9.3	38
61	Impaired PSII Proteostasis Promotes Retrograde Signaling via Salicylic Acid. Plant Physiology, 2019, 180, 2182-2197.	4.8	38
62	Functional complementation of an oxa1- yeast mutation identifies an Arabidopsis thaliana cDNA involved in the assembly of respiratory complexes. Plant Journal, 1997, 12, 1319-1327.	5.7	37
63	Isolation of an Arabidopsis thaliana cDNA by complementation of a yeast abc1 deletion mutant deficient in complex III respiratory activity. Gene, 1998, 221, 117-125.	2.2	37
64	The Non-Mendelian Green Cotyledon Gene in Soybean Encodes a Small Subunit of Photosystem II. Plant Physiology, 2017, 173, 2138-2147.	4.8	37
65	Possible function of VIPP1 in thylakoids. Plant Signaling and Behavior, 2013, 8, e22860.	2.4	36
66	Visualization of Plastids in Pollen Grains: Involvement of FtsZ1 in Pollen Plastid Division. Plant and Cell Physiology, 2009, 50, 904-908.	3.1	35
67	Allelic characterization of the leaf-variegated mutation var2 identifies the conserved amino acid residues of FtsH that are important for ATP hydrolysis and proteolysis. Plant Molecular Biology, 2004, 56, 705-716.	3.9	34
68	A Phylogenetic Re-evaluation of Morphological Variations of Starch Grains among Poaceae Species. Journal of Applied Glycoscience (1999), 2013, 60, 37-44.	0.7	33
69	Different amounts of DNA in each mitochondrion in rice root. Genes and Genetic Systems, 2006, 81, 215-218.	0.7	32
70	Possible function of VIPP1 in maintaining chloroplast membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 831-837.	1.0	32
71	The strange evolutionary history of plant mitochondrial tRNAs and their aminoacyl-tRNA synthetases. , 1999, 90, 333-337.		29
72	Variegated Tobacco Leaves Generated by Chloroplast FtsH Suppression: Implication of FtsH Function in the Maintenance of Thylakoid Membranes. Plant and Cell Physiology, 2012, 53, 391-404.	3.1	28

#	Article	IF	CITATIONS
73	Isolation of mutants with aberrant mitochondrial morphology from Arabidopsis thaliana. Genes and Genetic Systems, 2004, 79, 301-305.	0.7	26
74	Reduction in amounts of mitochondrial DNA in the sperm cells as a mechanism for maternal inheritance in Hordeum vulgare. Planta, 2002, 216, 235-244.	3.2	25
75	RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Plant and Cell Physiology, 2020, 61, 1262-1272.	3.1	25
76	Rice CYO1, an ortholog of Arabidopsis thaliana cotyledon chloroplast biogenesis factor AtCYO1, is expressed in leaves and involved in photosynthetic performance. Journal of Plant Physiology, 2016, 207, 78-83.	3.5	23
77	Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. Journal of Experimental Botany, 2018, 69, 1027-1035.	4.8	22
78	Dielectric relaxation of vegetable-based polyurethane. Journal of Materials Science, 2003, 38, 1465-1470.	3.7	21
79	Chemically Induced Expression of RiceOSB2under the Control of theOsPR1.1Promoter Confers Increased Anthocyanin Accumulation in Transgenic Rice. Journal of Agricultural and Food Chemistry, 2007, 55, 1241-1247.	5.2	21
80	The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells. Plant Physiology, 2017, 175, 1624-1633.	4.8	21
81	VIPP1 Involved in Chloroplast Membrane Integrity Has GTPase Activity in Vitro. Plant Physiology, 2018, 177, 328-338.	4.8	21
82	Tissue-specific organelle DNA degradation mediated by DPD1 exonuclease. Plant Signaling and Behavior, 2011, 6, 1391-1393.	2.4	18
83	Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsisnyc1 Mutant. Frontiers in Plant Science, 2016, 7, 533.	3.6	18
84	Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease. Plant Journal, 2012, 70, 637-649.	5.7	17
85	Isolation and characterization of cDNA clones corresponding to the genes expressed preferentially in floral organs of Arabidopsis thaliana. Plant Molecular Biology, 1996, 32, 759-765.	3.9	16
86	MOLECULAR DIVERGENCE AND CHARACTERIZATION OF TWO CHLOROPLAST DIVISION GENES, <i>FTSZ1 AND FTSZ2</i> , IN THE UNICELLULAR GREEN ALGA <i>NANNOCHLORIS BACILLARIS</i> (CHLOROPHYTA) ¹ . Journal of Phycology, 2004, 40, 546-556.	2.3	16
87	Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi. Plant and Cell Physiology, 2019, 60, 2086-2099.	3.1	15
88	Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy, 2014, 10, 936-937.	9.1	14
89	A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. Plant and Cell Physiology, 2015, 56, 977-991.	3.1	14
90	Phosphorylation of the Chloroplastic Metalloprotease FtsH in Arabidopsis Characterized by Phos-Tag SDS-PAGE. Frontiers in Plant Science, 2019, 10, 1080.	3.6	14

#	Article	IF	CITATIONS
91	Genetic analysis of chlorophyll synthesis and degradation regulated by BALANCE of CHLOROPHYLL METABOLISM. Plant Physiology, 2022, 189, 419-432.	4.8	14

Distribution and quantitative variation of mitochondrial plasmid-like DNAs in cultivated rice (Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

93	TERMINAL FLOWER 1-like genes in Brassica species. Plant Science, 1999, 142, 155-162.	3.6	13
94	Geometrical Formation of Compound Starch Grains in Rice Implements Voronoi Diagram. Plant and Cell Physiology, 2015, 56, pcv123.	3.1	13
95	Overexpression of BUNDLE SHEATH DEFECTIVE 2 improves the efficiency of photosynthesis and growth in <i>Arabidopsis</i> . Plant Journal, 2020, 102, 129-137.	5.7	13
96	Analyis sof homology of small plasmid-like mitochondrial DNAs in the diferent cytoplasmic male sterile strains in rice Japanese Journal of Genetics, 1989, 64, 49-56.	1.0	12
97	Analysis of mitochondrial DNAs from Oryza glaberrima and its cytoplasmic substituted line for Oryza sativa associated with cytoplasmic male sterility Japanese Journal of Genetics, 1990, 65, 1-6.	1.0	12
98	Characterization of a Flower-Specific Gene Encoding a Putative Myrosinase Binding Protein in Arabidopsis thaliana. Plant and Cell Physiology, 1999, 40, 1287-1296.	3.1	12
99	High temperature causes breakdown of S haplotype-dependent stigmatic self-incompatibility in self-incompatible Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70, 5745-5751.	4.8	10
100	Targeted proteome analysis of microalgae under high-light conditions by optimized protein extraction of photosynthetic organisms. Journal of Bioscience and Bioengineering, 2019, 127, 394-402.	2.2	10
101	Mutations in aÂ <i>Golden2-Like</i> ÂGene Cause Reduced Seed Weight inÂBarleyÂ <i>albino lemma 1</i> ÂMutants. Plant and Cell Physiology, 2021, 62, 447-457.	3.1	10
102	Isolation and molecular characterization of rbcS in the unicellular green alga Nannochloris bacillaris (Chlorophyta, Trebouxiophyceae). Phycological Research, 2005, 53, 67-76.	1.6	10
103	The BnALMT1 Protein that is an Aluminum-Activated Malate Transporter is Localized in the Plasma Membrane. Plant Signaling and Behavior, 2007, 2, 255-257.	2.4	9
104	In situ RNA hybridization using Technovit resin in Arabidopsis thaliana. Plant Molecular Biology Reporter, 1999, 17, 43-51.	1.8	8
105	Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Scientific Reports, 2021, 11, 9398.	3.3	8
106	Isolation and molecular characterization of rbcS in the unicellular green alga Nannochloris bacillaris (Chlorophyta, Trebouxiophyceae). Phycological Research, 2005, 53, 67-76.	1.6	7
107	Phototropin―and photosynthesisâ€dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells. Journal of Integrative Plant Biology, 2020, 62, 1352-1371.	8.5	7
108	Phos-tag-based approach to study protein phosphorylation in the thylakoid membrane. Photosynthesis Research, 2021, 147, 107-124.	2.9	7

#	Article	IF	CITATIONS
109	Maintaining the Chloroplast Redox Balance through the PGR5-Dependent Pathway and the Trx System Is Required for Light-Dependent Activation of Photosynthetic Reactions. Plant and Cell Physiology, 2022, 63, 92-103.	3.1	7
110	Highly efficient visual selection of transgenic rice plants using green fluorescent protein or anthocyanin synthetic genes. Plant Biotechnology, 2011, 28, 107-110.	1.0	6
111	Sorghum Ionomics Reveals the Functional <i>SbHMA3a</i> Allele that Limits Excess Cadmium Accumulation in Grains. Plant and Cell Physiology, 2022, 63, 713-728.	3.1	6
112	<i>DOMINANT AWN INHIBITOR</i> Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. Plant and Cell Physiology, 2022, 63, 901-918.	3.1	6
113	Linkage analysis of the nuclear homologues of mitochondrial plasmid-like DNAs in rice Japanese Journal of Genetics, 1991, 66, 597-607.	1.0	5
114	Isolation and characterization of Ty1/copia-like retrotransposons in mung bean (Vigna radiata). Journal of Plant Research, 2007, 120, 323-328.	2.4	5
115	Localization and expression of serine racemase in Arabidopsis thaliana. Amino Acids, 2009, 36, 587-590.	2.7	5
116	Plastid Protein Degradation During Leaf Development and Senescence: Role of Proteases and Chaperones. Advances in Photosynthesis and Respiration, 2013, , 453-477.	1.0	5
117	NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum. Scientific Reports, 2021, 11, 19828.	3.3	5
118	Reactive oxygen species derived from impaired quality control of Photosystem II are irrelevant to plasma-membrane NADPH oxidases. Plant Signaling and Behavior, 2010, 5, 264-266.	2.4	4
119	Overexpression of the protein disulfide isomerase AtCYO1 in chloroplasts slows dark-induced senescence in Arabidopsis. BMC Plant Biology, 2018, 18, 80.	3.6	4
120	Plastid Proteases. , 2014, , 359-389.		4
121	Possible compensatory role among chloroplast proteases under excess-light stress condition. Plant Signaling and Behavior, 2013, 8, e23198.	2.4	3
122	Taiwan–Japan Plant Biology 2017 Spotlight Issue: From Light Signals/Signaling to Photosynthesis and Chloroplast Development. Plant and Cell Physiology, 2018, 59, 1099-1103.	3.1	2
123	Functional division of f-type and m-type thioredoxins to regulate the Calvin cycle and cyclic electron transport around photosystem I. Journal of Plant Research, 2022, , 1.	2.4	2
124	With Greetings and Hope for a Recoverable 2021: From the PCP Editor-In-Chief. Plant and Cell Physiology, 2021, 62, 219-221.	3.1	1
125	Cellular Dynamics: Cellular Systems in the Time Domain. Plant Physiology, 2018, 176, 12-15.	4.8	0
126	A 2020 Vision of the Next FourÂYears—From the PCP's New Editor-in-Chief. Plant and Cell Physiology, 2020, 61, 671-672.	3.1	0

#	Article	IF	CITATIONS
127	Editorial Feature: Meet the PCP Editor-In-Chief—Wataru Sakamoto. Plant and Cell Physiology, 2021, 62, 222-223.	3.1	0
128	A Novel Link between Chloroplast Development and Stress Response Lessoned by Leaf-Variegated Mutant. Advanced Topics in Science and Technology in China, 2013, , 669-673.	0.1	0
129	The Lattice-Like Structure Observed by Vipp1-GFP in Arabidopsis Chloroplasts. Advanced Topics in Science and Technology in China, 2013, , 394-397.	0.1	0
130	Distinctive in vitro ATP Hydrolysis Activity of AtVIPP1, a Chloroplastic ESCRT-III Superfamily Protein in Arabidopsis. Frontiers in Plant Science, 0, 13, .	3.6	0