Michael A Riehle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Variation in Rhipicephalus sanguineus s.l. Ticks across Arizona. International Journal of Environmental Research and Public Health, 2022, 19, 4223.	2.6	7
2	Assessing Near-Infrared Spectroscopy (NIRS) for Evaluation of Aedes aegypti Population Age Structure. Insects, 2022, 13, 360.	2.2	7
3	Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes, 2021, 12, 119.	2.4	6
4	Activation of Anopheles stephensi Pantothenate Kinase and Coenzyme A Biosynthesis Reduces Infection with Diverse Plasmodium Species in the Mosquito Host. Biomolecules, 2021, 11, 807.	4.0	4
5	Increased insulin signaling in the Anopheles stephensi fat body regulates metabolism and enhances the host response to both bacterial challenge and Plasmodium falciparum infection. Insect Biochemistry and Molecular Biology, 2021, 139, 103669.	2.7	5
6	Midgut Mitochondrial Function as a Gatekeeper for Malaria Parasite Infection and Development in the Mosquito Host. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593159.	3.9	9
7	Size as a Proxy for Survival in <i>Aedes aegypti</i> (Diptera: Culicidae) Mosquitoes. Journal of Medical Entomology, 2020, 57, 1228-1238.	1.8	12
8	Vertical Transmission of Zika Virus in Aedes aegypti Produces Potentially Infectious Progeny. American Journal of Tropical Medicine and Hygiene, 2020, 103, 876-883.	1.4	12
9	Increased Akt signaling in the fat body of Anopheles stephensi extends lifespan and increases lifetime fecundity through modulation of insulin-like peptides. Journal of Insect Physiology, 2019, 118, 103932.	2.0	10
10	Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathogens, 2018, 14, e1007418.	4.7	25
11	<i>Aedes aegypti</i> (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico. Journal of Medical Entomology, 2017, 54, 204-211.	1.8	22
12	Conservation and Convergence of Immune Signaling Pathways With Mitochondrial Regulation in Vector Arthropod Physiology. , 2017, , 15-33.		4
13	Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochemical Journal, 2016, 473, 3487-3503.	3.7	18
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
15	Increased Akt signaling in the mosquito fat body increases adult survivorship. FASEB Journal, 2015, 29, 1404-1413.	0.5	24
16	Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi. Developmental and Comparative Immunology, 2015, 53, 134-144.	2.3	33
17	Resveratrol Fails to Extend Life Span in the Mosquito <i>Anopheles stephensi</i> . Rejuvenation Research, 2015, 18, 473-478.	1.8	15
18	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492

MICHAEL A RIEHLE

#	Article	IF	CITATIONS
19	Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biology, 2014, 15, 459.	8.8	119
20	Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathogens, 2014, 10, e1004231.	4.7	34
21	Effects of ingested vertebrate-derived factors on insect immune responses. Current Opinion in Insect Science, 2014, 3, 1-5.	4.4	36
22	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
23	Antipathogen effector molecules: current and future strategies , 2014, , 168-187.		0
24	Differential Emergence of Dengue in the Arizona-Sonora Desert Region: Understanding the Role of Social and Environmental Factors. ISEE Conference Abstracts, 2014, 2014, 3011.	0.0	0
25	Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes and Infection, 2013, 15, 775-787.	1.9	41
26	Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host. PLoS Pathogens, 2013, 9, e1003180.	4.7	52
27	Insulin-Like Peptides. , 2013, , 267-275.		5
28	Ingested Human Insulin Inhibits the Mosquito NF-κB-Dependent Immune Response to Plasmodium falciparum. Infection and Immunity, 2012, 80, 2141-2149.	2.2	60
29	Insulin-Like Peptides. , 2012, , 63-92.		72
30	Aging Field Collected Aedes aegypti to Determine Their Capacity for Dengue Transmission in the Southwestern United States. PLoS ONE, 2012, 7, e46946.	2.5	29
31	The Putative AKH Receptor of the Tobacco Hornworm, <i>Manduca sexta</i> , and Its Expression. Journal of Insect Science, 2011, 11, 1-20.	1.5	40
32	Insulin-like peptides in the mosquito Anopheles stephensi: Identification and expression in response to diet and infection with Plasmodium falciparum. General and Comparative Endocrinology, 2011, 173, 303-312.	1.8	55
33	Utilizing rabbit immunoglobulin G protein for mark-capture studies on the desert subterranean termite, Heterotermes aureus (Snyder). Insectes Sociaux, 2010, 57, 147-155.	1.2	14
34	The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Experimental Gerontology, 2010, 45, 685-690.	2.8	82
35	Activation of Akt Signaling Reduces the Prevalence and Intensity of Malaria Parasite Infection and Lifespan in Anopheles stephensi Mosquitoes. PLoS Pathogens, 2010, 6, e1001003.	4.7	138
36	Correction: Activation of Akt Signaling Reduces the Prevalence and Intensity of Malaria Parasite Infection and Lifespan in Anopheles stephensi Mosquitoes. PLoS Pathogens, 2010, 6, 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b7.	4.7	65

MICHAEL A RIEHLE

#	Article	IF	CITATIONS
37	Manipulating insulin signaling to enhance mosquito reproduction. BMC Physiology, 2009, 9, 15.	3.6	20
38	Expression of a mutated phospholipase A2in transgenic Aedes fluviatilis mosquitoes impacts Plasmodium gallinaceum development. Insect Molecular Biology, 2008, 17, 175-183.	2.0	29
39	Identification and characterization of the catalytic subunit of phosphatidylinositol 3-kinase in the yellow fever mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2008, 38, 932-939.	2.7	13
40	The insulin signaling cascade from nematodes to mammals: Insights into innate immunity of Anopheles mosquitoes to malaria parasite infection. Developmental and Comparative Immunology, 2007, 31, 647-656.	2.3	58
41	Characterization of Phosphatase and Tensin Homolog expression in the mosquito Aedes aegypti: Six splice variants with developmental and tissue specificity. Insect Molecular Biology, 2007, 16, 277-286.	2.0	9
42	Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. International Journal for Parasitology, 2007, 37, 595-603.	3.1	130
43	Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: Expression, cellular localization, and phylogeny. Peptides, 2006, 27, 2547-2560.	2.4	109
44	Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochemistry and Molecular Biology, 2005, 35, 699-707.	2.7	91
45	Molecular characterization of insulin-like peptide genes and their expression in the African malaria mosquito, Anopheles gambiae. Insect Molecular Biology, 2004, 13, 305-315.	2.0	79
46	Molecular analysis of the serine/threonine kinase Akt and its expression in the mosquito Aedes aegypti. Insect Molecular Biology, 2003, 12, 225-232.	2.0	44
47	Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. Journal of Experimental Biology, 2003, 206, 3809-3816.	1.7	61
48	Neuropeptides and Peptide Hormones inAnopheles gambiae. Science, 2002, 298, 172-175.	12.6	263
49	Characterization of the <i>AeaHP</i> Gene and its Expression in the Mosquito <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2002, 39, 331-342.	1.8	30
50	Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell and Tissue Research, 2002, 308, 409-420.	2.9	94
51	Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 1999, 29, 855-860.	2.7	139
52	A Factor Preventing Melanization of Sephadex CM C-25 Beads inPlasmodium-Susceptible and RefractoryAnopheles gambiae. Experimental Parasitology, 1998, 90, 34-41.	1.2	16
53	Ixodes scapularis (Acari: Ixodidae): Status and Changes in Prevalence and Distribution in Wisconsin Between 1981 and 1994 Measured by Deer Surveillance. Journal of Medical Entomology, 1996, 33, 933-938.	1.8	31
54	Effect of Mosquito Age and Reproductive Status on Melanization of Sephadex Beads in Plasmodium-Refractory and -Susceptible Strains of Anopheles gambiae. Journal of Invertebrate Pathology, 1995, 66, 11-17.	3.2	76

#	Article	IF	CITATIONS
55	Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Developmental and Comparative Immunology, 1994, 18, 369-375.	2.3	104