Steven E Brauth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2272804/publications.pdf Version: 2024-02-01

STEVEN F ROALITH

#	Article	IF	CITATIONS
1	Distribution of mu, delta, and kappa opiate receptor types in the forebrain and midbrain of pigeons. Journal of Comparative Neurology, 1989, 280, 359-382.	1.6	118
2	Basal ganglionic pathways to the tectum: Studies in reptiles. Journal of Comparative Neurology, 1980, 193, 565-589.	1.6	111
3	Telencephalic projections from midbrain and isthmal cell groups in the pigeon. II. The nigral complex. Journal of Comparative Neurology, 1986, 247, 92-110.	1.6	107
4	The paleostriatal system of Caiman crocodilus. Journal of Comparative Neurology, 1980, 189, 437-465.	1.6	103
5	Telencephalic projections from midbrain and isthmal cell groups in the pigeon. I. Locus coeruleus and subcoeruleus. Journal of Comparative Neurology, 1986, 247, 69-91.	1.6	100
6	Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus). Journal of Comparative Neurology, 1997, 377, 179-206.	1.6	90
7	The substance P-containing striatotegmental path in reptiles: An immunohistochemical study. Journal of Comparative Neurology, 1983, 219, 305-327.	1.6	86
8	Calcitoninâ€gene related peptide is an evolutionarily conserved marker within the amniote thalamoâ€ŧelencephalic auditory pathway. Journal of Comparative Neurology, 1991, 313, 227-239.	1.6	52
9	Projections of the oval nucleus of the hyperstriatum ventrale in the budgerigar: Relationships with the auditory system. Journal of Comparative Neurology, 2001, 432, 481-511.	1.6	47
10	Neurotensin binding sites in the forebrain and midbrain of the pigeon. Journal of Comparative Neurology, 1986, 253, 358-373.	1.6	37
11	Catecholamine neurons in the brainstem of the reptileCaiman crocodilus. Journal of Comparative Neurology, 1988, 270, 313-326.	1.6	30
12	Distribution of choline acetyltransferase and acetylcholinesterase in vocal control nuclei of the budgerigar (Melopsittacus undulatus). , 1996, 369, 220-235.		22
13	Male vocal competition is dynamic and strongly affected by social contexts in music frogs. Animal Cognition, 2014, 17, 483-494.	1.8	22
14	Distribution of tyrosine hydroxylase-containing neurons and fibers in the brain of the budgerigar (Melopsittacus undulatus): General patterns and labeling in vocal control nuclei. Journal of Comparative Neurology, 2001, 429, 436-454.	1.6	19
15	Bigger Is Not Always Better: Females Prefer Males of Mean Body Size in Philautus odontotarsus. PLoS ONE, 2016, 11, e0149879.	2.5	19
16	The biological significance of acoustic stimuli determines ear preference in the music frog. Journal of Experimental Biology, 2015, 218, 740-747.	1.7	18
17	Sometimes noise is beneficial: stream noise informs vocal communication in the little torrent frog Amolops torrentis. Journal of Ethology, 2017, 35, 259-267.	0.8	18
18	Contact Call-Driven Zenk Protein Induction and Habituation in Telencephalic Auditory Pathways in the Budgerigar (Melopsittacus Undulatus): Implications For Understanding Vocal Learning Processes. Learning and Memory, 2002, 9, 76-88.	1.3	17

#	Article	IF	CITATIONS
19	Effect of the Level of Anesthesia on the Auditory Brainstem Response in the Emei Music Frog (Babina) Tj ETQq1	1 0,78431 2.5	4 rgBT /Over
20	Methionine enkephalin immunoreactivity in the brain of the budgerigar (Melopsittacus undulatus): Similarities and differences with respect to oscine songbirds. , 1998, 393, 145-168.		15
21	Sexual dimorphism of vocal control nuclei in budgerigars (Melopsittacus undulatus) revealed with Nissl and NADPH-d staining. Journal of Comparative Neurology, 2005, 484, 15-27.	1.6	15
22	The spectral structure of vocalizations match hearing sensitivity but imprecisely in <i>Philautus odontotarsus</i> . Bioacoustics, 2017, 26, 121-134.	1.7	15
23	The thermal background determines how the infrared and visual systems interact in pit vipers. Journal of Experimental Biology, 2017, 220, 3103-3109.	1.7	15
24	The First Call Note Plays a Crucial Role in Frog Vocal Communication. Scientific Reports, 2017, 7, 10128.	3.3	15
25	Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation. Behavioural Brain Research, 2014, 266, 77-84.	2.2	14
26	Male-male competition and female choice are differentially affected by male call acoustics in the serrate-legged small treefrog, <i>Kurixalus odontotarsus</i> . PeerJ, 2017, 5, e3980.	2.0	13
27	Male competition strategies change when information concerning female receptivity is available. Behavioral Ecology, 2012, 23, 307-312.	2.2	12
28	Auditory perception exhibits sexual dimorphism and left telencephalic dominance in <i>Xenopus laevis</i> . Biology Open, 2018, 7, .	1.2	9
29	Auditory sensitivity exhibits sexual dimorphism and seasonal plasticity in music frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 1029-1044.	1.6	9
30	Competitive pressures affect sexual signal complexity in <i>Kurixalus odontotarsus</i> : insights into the evolution of compound calls. Biology Open, 2017, 6, 1913-1918.	1.2	8
31	A test of the matched filter hypothesis in two sympatric frogs, <i>Chiromantis doriae</i> and <i>Feihyla vittata</i> . Bioacoustics, 2019, 28, 488-502.	1.7	7
32	The first call note of the Anhui tree frog (<i>Rhacophorus zhoukaiya</i>) is acoustically suited for enabling individual recognition. Bioacoustics, 2019, 28, 155-176.	1.7	7
33	Contact call-driven zenk mRNA expression in the brain of the budgerigar (Melopsittacus undulatus). Molecular Brain Research, 2003, 117, 97-103.	2.3	6
34	Contact-call driven and tone-driven zenk expression in the nucleus ovoidalis of the budgerigar (Melopsittacus undulatus). NeuroReport, 2006, 17, 1407-1410.	1.2	6
35	Auditory neural networks for attention prefer biologically significant sounds and exhibit sexual dimorphism in anurans. Journal of Experimental Biology, 2018, 221, .	1.7	6
36	Feeding and contact call stimulation both induce zenk and cfos expression in a higher order telencephalic area necessary for vocal learning in budgerigars. Behavioural Brain Research, 2006, 168, 331-338.	2.2	5

#	Article	IF	CITATIONS
37	The right thalamus may play an important role in anesthesia-awakening regulation in frogs. PeerJ, 2018, 6, e4516.	2.0	5
38	Resting-state brain networks revealed by granger causal connectivity in frogs. Neuroscience, 2016, 334, 332-340.	2.3	4
39	Rapid contact call-driven induction of NR2A and NR2B NMDA subunit mRNAs in the auditory thalamus of the budgerigar (Melopsittacus undulatus). Neurobiology of Learning and Memory, 2007, 88, 33-39.	1.9	2