
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227246/publications.pdf Version: 2024-02-01

FULVIO RICCI

#	Article	IF	CITATIONS
1	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
2	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
4	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	4.0	644
5	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
6	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
7	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
8	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	4.0	179
9	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	4.0	171
10	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	4.0	148
11	The gravitational wave detector NAUTILUS operating at T = 0.1 K. Astroparticle Physics, 1997, 7, 231-243.	4.3	132
12	Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. Physical Review D, 1993, 47, 362-375.	4.7	130
13	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	4.0	116
14	Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3, 344-366.	26.6	96
15	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
16	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	1.3	89
17	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	4.0	89
18	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	4.0	85

#	Article	IF	CITATIONS
19	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	4.0	85
20	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	4.0	83
21	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	4.3	79
22	First Cooling Below 0.1 K of the New Gravitational-Wave Antenna "Nautilus―of the Rome Group. Europhysics Letters, 1991, 16, 231-235.	2.0	64
23	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
24	Analysis of the data recorded by the Mont Blanc neutrino detector and by the Maryland and Rome gravitational-wave detectors during SN1987A. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1989, 12, 75-103.	0.2	60
25	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	4.0	59
26	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
27	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	4.0	54
28	Data Recordered by the Rome Room Temperature Gravitational Wave Antenna, during the Supernova SN 1987 <i>a</i> in the Large Magellanic Cloud. Europhysics Letters, 1987, 3, 1325-1330.	2.0	51
29	Suspension last stages for the mirrors of the Virgo interferometric gravitational wave antenna. Review of Scientific Instruments, 1999, 70, 3463-3472.	1.3	51
30	On the gravitomagnetic time delay. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 308, 101-109.	2.1	49
31	New method to observe gravitational waves emitted by core collapse supernovae. Physical Review D, 2018, 98, .	4.7	44
32	Challenges in thermal noise for 3rd generation of gravitational wave detectors. General Relativity and Gravitation, 2011, 43, 593-622.	2.0	35
33	Preliminary results on the operation of a 2270 kg cryogenic gravitational-wave antenna with a resonant capacitive transducer and a d.c. SQUID amplifier. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1986, 9, 829-845.	0.2	33
34	Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Review of Scientific Instruments, 2006, 77, 095102.	1.3	32
35	The maraging-steel blades of the Virgo super attenuator. Measurement Science and Technology, 2000, 11, 467-476.	2.6	31
36	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31

#	Article	IF	CITATIONS
37	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	4.0	30
38	Deep learning for core-collapse supernova detection. Physical Review D, 2021, 103, .	4.7	30
39	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.4	29
40	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
41	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	2.9	28
42	Microseismic studies of an underground site for a new interferometric gravitational wave detector. Classical and Quantum Gravity, 2014, 31, 105016.	4.0	28
43	Sensitivity of the Rome Gravitational Wave Experiment with the Explorer Cryogenic Resonant Antenna Operating at 2 K. Europhysics Letters, 1990, 12, 5-11.	2.0	27
44	Back-action-evading transducing scheme for cryogenic gravitational wave antennas. Physical Review D, 1993, 48, 448-465.	4.7	27
45	Time delay due to spin and gravitational lensing. Classical and Quantum Gravity, 2002, 19, 3863-3874.	4.0	27
46	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
47	Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna. Zeitschrift Für Physik C-Particles and Fields, 1991, 50, 21-29.	1.5	26
48	Upper limit for a gravitational-wave stochastic background with the EXPLORER and NAUTILUS resonant detectors. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 385, 421-424.	4.1	26
49	A cosmic-ray veto system for the gravitational wave detector NAUTILUS. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 355, 624-631.	1.6	25
50	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	4.0	25
51	Coincidences among the data recorded by the baksan, kamioka and mont blanc underground neutrino detectors, and by the Maryland and Rome gravitational-wave detectors during Supernova 1987 A. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 171-193.	0.2	23
52	Upper limit for nuclearite flux from the Rome gravitational wave resonant detectors. Physical Review D, 1993, 47, 4770-4773.	4.7	23
53	Time delay due to spin inside a rotating shell. Classical and Quantum Gravity, 2002, 19, 3875-3881.	4.0	23
54	Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search. Classical and Quantum Gravity, 2008, 25, 045001.	4.0	23

#	Article	IF	CITATIONS
55	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	4.3	22
56	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	4.3	22
57	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	4.0	22
58	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.4	21
59	Initial operation at liquid-helium temperature of theM=2270 kg Al 5056 gravitational-wave antenna of the Rome group. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1984, 7, 338-354.	0.2	20
60	Initial operation of theM=390 kg cryogenic gravitational-wave antenna. Il Nuovo Cimento Della SocietÀ Italiana Di Fisica C, 1978, 1, 497-509.	0.2	19
61	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	4.3	19
62	Experimental evidence for an optical spring. Physical Review A, 2006, 74, .	2.5	19
63	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
64	A Seismological Study of the Sos Enattos Area—the Sardinia Candidate Site for the Einstein Telescope. Seismological Research Letters, 2021, 92, 352-364.	1.9	17
65	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	4.0	16
66	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
67	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
68	A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data. Classical and Quantum Gravity, 2005, 22, S1293-S1301.	4.0	15
69	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.4	15
70	Characterization of the Sos Enattos site for the Einstein Telescope. Journal of Physics: Conference Series, 2020, 1468, 012242.	0.4	15
71	Monte Carlo simulation of the high energy cosmic muon background in a resonant gravitational wave antenna. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 260, 491-500.	1.6	14
72	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	1.3	14

#	Article	IF	CITATIONS
73	Monitoring the acoustic emission of the blades of the mirror suspension for a gravitational wave interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 389-397.	2.1	14
74	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
75	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	4.0	13
76	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
77	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
78	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
79	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13
80	A comparison of methods for gravitational wave burst searches from LIGO and Virgo. Classical and Quantum Gravity, 2008, 25, 045002.	4.0	12
81	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.4	12
82	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	4.3	11
83	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
84	Progress in a Vacuum Weight Search Experiment. Physics, 2020, 2, 1-13.	1.4	11
85	A study on the external-noise input in weber-type gravitational-wave antennas. Il Nuovo Cimento Della SocietÀ Italiana Di Fisica C, 1981, 4, 93-102.	0.2	10
86	Observation of the Brownian motion of a mechanical oscillator by means of a back action evading system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 180, 43-49.	2.1	10
87	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.4	10
88	An all-sky search of EXPLORER data. Classical and Quantum Gravity, 2005, 22, S1243-S1254.	4.0	10
89	Benefits of joint LIGO - Virgo coincidence searches for burst and inspiral signals. Journal of Physics: Conference Series, 2006, 32, 212-222.	0.4	10
90	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10

#	Article	IF	CITATIONS
91	All-sky search of NAUTILUS data. Classical and Quantum Gravity, 2008, 25, 184012.	4.0	10
92	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	4.0	10
93	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
94	Cryogenic system of the Rome group gravitational wave experiment. Cryogenics, 1985, 25, 234-237.	1.7	9
95	Coincidences among the Maryland and Rome Gravitational Wave Detector Data and the Mont Blanc and Kamioka Neutrino Detector Data in the Period of SN1987A. Annals of the New York Academy of Sciences, 1989, 571, 561-576.	3.8	9
96	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	4.0	9
97	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
98	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
99	Correlation between the Maryland and Rome gravitational-wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN 1987 A. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1991, 106, 1257-1269.	0.2	8
100	Noise behaviour of the Explorer gravitational wave antenna during λ transition to the superfluid phase. Cryogenics, 1992, 32, 668-670.	1.7	8
101	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
102	Laser with an in-loop relative frequency stability of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:mn> 1.0 < / mml:mn> < mml:mo>× < / mml:mo> < mml:msup> < mml:mrow> < mr a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .	nl:mn>104	:/mml:mn>
103	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.4	8
104	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	1.3	8
105	Background of gravitational-wave antennas of possible terrestrial origin—I. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1981, 4, 295-308.	0.2	7
106	Data analysis for a gravitational wave antenna with resonant capacitive transducer. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1986, 9, 51-73.	0.2	7
107	Test of a back-action evading scheme on a cryogenic gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 215, 141-148.	2.1	7
108	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	4.0	7

#	Article	IF	CITATIONS
109	The search for continuous sources in the Virgo experiment. Full-sky incoherent step: Âlocal and ÂgridÂ tests. Classical and Quantum Gravity, 2003, 20, S655-S664.	4.0	7
110	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	4.0	7
111	A first comparison between LIGO and Virgo inspiral search pipelines. Classical and Quantum Gravity, 2005, 22, S1149-S1158.	4.0	7
112	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	4.0	7
113	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	3.8	7
114	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
115	Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators. Physical Review D, 2011, 84, .	4.7	7
116	A lower limit for Newtonian-noise models of the Einstein Telescope. European Physical Journal Plus, 2022, 137, .	2.6	7
117	Information on the operation of theM = 389 kg gravitational-wave antenna of the Roma group at an effective noise temperature ofT w eff = 0.3 K. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1980, 28, 362-366.	0.4	6
118	Test facility for resonance transducers of cryogenic gravitational wave antennas. Measurement Science and Technology, 1992, 3, 501-507.	2.6	6
119	Signal-to-noise ratio analysis for a back-action-evading measurement on a double harmonic oscillator. Physical Review D, 1994, 50, 3596-3607.	4.7	6
120	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	2.1	6
121	The low frequency facility Fabry–Perot cavity used as a speed-meter. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 1-9.	2.1	6
122	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	4.0	6
123	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
124	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
125	The cryogenic detector of gravitational waves in Frascati. Journal of Physics E: Scientific Instruments, 1981, 14, 1067-1072.	0.7	5
126	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	4.0	5

#	Article	IF	CITATIONS
127	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	4.0	5
128	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	4.0	5
129	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	4.7	5
130	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
131	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	4.0	5
132	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	2.6	5
133	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	2.6	5
134	Argon and Other Defects in Amorphous SiO2 Coatings for Gravitational-Wave Detectors. Coatings, 2022, 12, 1001.	2.6	5
135	Background of gravitational-wave antennas of possible terrestrial origin-III. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1981, 4, 441-457.	0.2	4
136	Weber-type gravitational wave antenna with two resonant transducers: A new tool for gravitational wave signal identification. Physical Review D, 1993, 47, 5233-5237.	4.7	4
137	Search for gravitational radiation from Supernova 1993J. Physical Review D, 1997, 56, 6081-6084.	4.7	4
138	Electromagnetic coupling dissipation between mirrors and reaction masses in Virgo. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 252, 11-16.	2.1	4
139	Elastic and anelastic properties of Marval 18 steel. Journal of Alloys and Compounds, 2000, 310, 400-404.	5.5	4
140	First results of the low frequency facility experiment. Classical and Quantum Gravity, 2004, 21, S1099-S1106.	4.0	4
141	Sensitivity of the Low Frequency Facility experiment around 10ÂHz. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 322, 1-9.	2.1	4
142	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	4.0	4
143	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.4	4
144	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4

#	Article	IF	CITATIONS
145	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 $\hbox{\AA}-10 \hbox{\AA}^21$ on a 100 ms time scale. , 2009, , .		4
146	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	2.1	4
147	Cryogenics and Einstein Telescope. General Relativity and Gravitation, 2011, 43, 657-669.	2.0	4
148	Cryogenic vacuum considerations for future gravitational wave detectors. Physical Review D, 2021, 104, .	4.7	4
149	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	4.0	3
150	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.4	3
151	Considerations on collected data with the Low Frequency Facility experiment. Journal of Physics: Conference Series, 2006, 32, 346-352.	0.4	3
152	Vibration Free Cryostat for cooling suspended mirrors. Journal of Physics: Conference Series, 2006, 32, 374-379.	0.4	3
153	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	4.0	3
154	A cryogenic payload for the 3rd generation of gravitational wave interferometers. Astroparticle Physics, 2011, 35, 67-75.	4.3	3
155	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	1.3	3
156	Towards ponderomotive squeezing with SIPS experiment. Physica Scripta, 2021, 96, 114007.	2.5	3
157	Low Temperature and Gravitation Wave Detectors. Astrophysics and Space Science Library, 2014, , 363-387.	2.7	3
158	Anelastic and elastic properties of a synthetic monocrystal of bismuth germanate Bi4Ge3O12 at low temperatures. Journal of Alloys and Compounds, 1994, 211-212, 640-643.	5.5	2
159	Status of VIRGO. , 2004, 5500, 58.		2
160	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.4	2
161	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	4.0	2
162	Experimental upper limit on the estimated thermal noise at low frequencies in a gravitational wave detector. Physical Review D, 2007, 76, .	4.7	2

#	Article	IF	CITATIONS
163	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.4	2
164	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
165	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
166	Performances of a super conductive parabridge transducer for liquidhelium temperature applications. Cryogenics, 1994, 34, 443-447.	1.7	1
167	Anelastic properties of resonant transducers for cryogenic gravitational wave antennas. Journal of Alloys and Compounds, 1994, 211-212, 644-648.	5.5	1
168	Single device telemetric algorithm for absolute position measurement using a CCD camera. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 295, 92-100.	2.1	1
169	Influence of a mirror holder on thermal noise in gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315, 409-417.	2.1	1
170	A GRID solution for gravitational waves signal analysis from coalescing binaries: performances of test algorithms and further developments. Classical and Quantum Gravity, 2004, 21, S811-S814.	4.0	1
171	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	4.0	1
172	All-sky search of EXPLORER data: search for coincidences. Classical and Quantum Gravity, 2006, 23, S687-S692.	4.0	1
173	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
174	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
175	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
176	Deep learning algorithms for gravitational waves core-collapse supernova detection. , 2021, , .		1
177	Seismic noise background in the Baksan Neutrino Observatory. European Physical Journal Plus, 2022, 137, 1.	2.6	1
178	The ultracryogenic gravitational wave detector NAUTILUS. European Physical Journal D, 1996, 46, 2907-2908.	0.4	0
179	Cosmic-ray-induced cascades on the ultracryogenic antenna NAUTILUS. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 101-103.	0.4	0
180	THE GWDAW-99 WORKSHOP. International Journal of Modern Physics D, 2000, 09, 227-228.	2.1	0

#	Article	IF	CITATIONS
181	An alternative strategy for cooling the mirrors of the gravitational wave interferometers at low temperature. , 0, , .		0
182	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.4	0
183	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	4.0	0
184	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
185	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0
186	The 14th Gravitational Wave Data Analysis Workshop (GWDAW-14), University of Rome`Sapienza', Rome, Italy, 26–29 January 2010. Classical and Quantum Gravity, 2010, 27, 190301.	4.0	0
187	Preliminary results on the cryogenic payload for the 3rd generation g.w. interferometers. Journal of Physics: Conference Series, 2010, 228, 012030.	0.4	0
188	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.4	0
189	Gravitational wave observations and future detectors. Rendiconti Lincei, 2019, 30, 57-64.	2.2	0
190	THE GRAVITATIONAL WAVE DETECTORS ON THE EARTH AT THE ERA OF THE VIRGO START UP. , 2005, , .		0
191	14thGravitational Waves Data Analysis Workshop. Journal of Physics: Conference Series, 2010, 243, 011001.	0.4	0
192	GRAVITATIONAL WAVES: FROM THE PAST TO THE FUTURE OF THE GLOBAL NETWORK OF DETECTORS. , 2010, , .		0