Miroslav Vlcek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2272295/publications.pdf Version: 2024-02-01

MIDOSLAWVICER

#	Article	IF	CITATIONS
1	Model of photoinduced changes of optical properties in amorphous layers and glasses of Ge-Sb-S, Ge-S, As-S and As-Se systems. Journal of Non-Crystalline Solids, 1987, 97-98, 1223-1226.	3.1	58
2	Observation of light polarization-dependent structural changes in chalcogenide glasses. Applied Physics Letters, 2003, 82, 706-708.	3.3	55
3	Photoinduced volume change in arsenic chalcogenides by band-gap light. Physical Review B, 2006, 74, .	3.2	37
4	Preparation of arsenic sulfide thin films for integrated optical elements by spiral bar coating. Optical Materials Express, 2014, 4, 384.	3.0	31
5	Comparison of structural transforma- tions in bulk and as-evaporated optical media under action of polychromatic or photon-energy dependent monochromatic illumination. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2705-2708.	0.8	28
6	Properties of arsenic sulphide (β-As4S4) modified by mechanical activation. Journal of Materials Science, 2017, 52, 1747-1758.	3.7	26
7	The influence of the composition of the layers and of the inorganic solvents on photoinduced dissolution of As-S amorphous thin films. Journal of Non-Crystalline Solids, 1991, 137-138, 1035-1038.	3.1	24
8	Photoinduced effects in Ge-Sb-S glasses and amorphous layers. Journal of Non-Crystalline Solids, 1987, 90, 513-516.	3.1	21
9	Structure and properties of spin-coated Ge_25S_75 chalcogenide thin films. Optical Materials Express, 2016, 6, 1973.	3.0	21
10	Exposure enhanced photoluminescence of CdS _{0.9} Se _{0.1} quantum dots embedded in spin-coated Ge ₂₅ S ₇₅ thin films. RSC Advances, 2017, 7, 53830-53838.	3.6	20
11	Rutherford backscattering and kinetics study of the photo-induced solid state chemical reaction between silver and amorphous As33S67 layers. Journal of Non-Crystalline Solids, 1997, 212, 157-165.	3.1	17
12	Glass formation in the Ge–Se–AgI ternary. Journal of Non-Crystalline Solids, 2000, 266-269, 867-871.	3.1	16
13	Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography. Journal of Materials Science: Materials in Electronics, 2009, 20, 290-293.	2.2	16
14	Photoinduced changes of structure and properties of amorphous chalcogenides. Reactivity of Solids, 1988, 5, 341-349.	0.3	15
15	Comparison of optical and chemical properties of thermally evaporated and spin-coated chalcogenide As S thin films targeting electron beam lithography applications. Journal of Non-Crystalline Solids, 2019, 508, 7-14.	3.1	13
16	Study of dry―and wetâ€process amorphous arsenic sulfides: Synthesis, Raman reference spectra, and identification in historical art materials. Journal of Raman Spectroscopy, 2019, 50, 396-406.	2.5	13
17	Solution processed As ₃₀ Se ₇₀ chalcogenide glass thin films with specular optical quality: multi-component solvent approach. Optical Materials Express, 2018, 8, 948.	3.0	11
18	Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Applied Surface Science, 2017, 394, 604-612.	6.1	10

MIROSLAV VLCEK

#	Article	IF	CITATIONS
19	N,N′,N′-trisubstituted thiourea as a novel sulfur source for the synthesis of Mn-doped ZnS QDs. Journal of Alloys and Compounds, 2020, 831, 154814.	5.5	10
20	Thermal dependence of photo-induced effects in spin-coated As20Ge12.5S67.5 thin films. Journal of Non-Crystalline Solids, 2017, 471, 415-420.	3.1	9
21	Deposition and characterization of solution processed Se-rich Ge-Se thin films with specular optical quality using multi-component solvent approach. Optical Materials Express, 2020, 10, 2973.	3.0	9
22	Mechanistic investigation of the sulfur precursor evolution in the synthesis of highly photoluminescent Cd _{0.15} Zn _{0.85} S quantum dots. New Journal of Chemistry, 2018, 42, 14779-14788.	2.8	8
23	Environmentally friendly approach to the synthesis of monodisperse and bright blue emitting Cd0.15Zn0.85S quantum dots. Journal of Alloys and Compounds, 2020, 812, 152159.	5.5	8
24	Wavelength Dependence of Photostructural Transformations in As2S3 Thin Films. Physics Procedia, 2013, 44, 75-81.	1.2	7
25	Modification of solution processed thin chalcogenide films composition by source solution doping. Journal of Non-Crystalline Solids, 2019, 517, 76-82.	3.1	7
26	Solution processed Ge ₂₀ Sb ₅ S ₇₅ thin films: the effect of solution concentration and multiple layers stacking. Optical Materials Express, 2019, 9, 4360.	3.0	7
27	Tunable optical performance in nanosized AgInS2-ZnS solid solution heterostructures due to the precursor's ratio modification. Optical Materials Express, 2021, 11, 539.	3.0	6
28	Study of Lithium-Lead Phosphate and Borophosphate Glasses. Advanced Materials Research, 0, 39-40, 181-184.	0.3	5
29	Electronic and atomic structure of amorphous thin films with high-resolution XPS: Examples of applications & amp; limitations. Journal of Non-Crystalline Solids, 2013, 377, 155-158.	3.1	5
30	Synthetic development in Cd–Zn–Se quantum dots chemistry. Optical Materials, 2019, 97, 109385.	3.6	5
31	Parameterization of photobleaching and photodarkening in-situ kinetics in thermally deposited GeSe2 thin films. Thin Solid Films, 2021, 726, 138659.	1.8	5
32	Preparation of quaternary solution processed chalcogenide thin films using mixtures of separate As40S60 and Ge20Sb5S75 glass solutions. Journal of Non-Crystalline Solids, 2021, 564, 120833.	3.1	5
33	Peculiarities of As-S glass structure doped with ytterbium. , 2011, , .		4
34	Spectroscopic ellipsometry characterization of spin-coated Ge ₂₅ S ₇₅ chalcogenide thin films. Pure and Applied Chemistry, 2017, 89, 437-449.	1.9	4
35	Morphology and optical properties of CeF3 and CeF3:Tb nanocrystals: The dominant role of the reaction thermal mode. Materials Chemistry and Physics, 2021, 260, 124161.	4.0	4

36 Optical characterization of As 40 S 40 Se 20 inorganic resist. , 1998, , .

MIROSLAV VLCEK

#	Article	IF	CITATIONS
37	Comparison of solution processed As33S67 thin films deposited using primary amines of various aliphatic chain length. Journal of Non-Crystalline Solids, 2020, 550, 120382.	3.1	3
38	Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis. Nanomaterials, 2021, 11, 2616.	4.1	3
39	Imaging technology based on As 38 S 62 thin layers. , 1998, 3573, 401.		2
40	The systematic study of the precursor ratio effect in the Cd–Zn–S quantum dot synthesis. CrystEngComm, 2020, 22, 4324-4337.	2.6	2
41	Structuring of solution processed and thermally evaporated As33S67 thin films by soft stamp hot embossing method. Journal of Non-Crystalline Solids, 2021, 559, 120674.	3.1	2
42	Raman Spectra in As-Based Chalcogenide Optical Fibers. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 253-256.	0.5	2
43	Enhanced optical properties of ZnSexS1-x and Mn-doped ZnSexS1-x QDs via non-toxic synthetic approach. Materials Chemistry and Physics, 2022, 284, 126060.	4.0	2
44	Kinetics and Rutherford backscattering study of the photo-induced solid state chemical reaction between silver and amorphous As33S67layers. , 1996, , .		1
45	<title>Image formation properties of As<formula><inf><roman>40</roman></inf></formula>S<formula><inf><roman>20</roman></inf></formula>S thin layers</title> . , 1998, , .	e <formula< td=""><td>a>≭inf> < ron</td></formula<>	a>≭inf> < ron
46	<title>Photoimaging properties and imaging technology based on As<formula><inf><roman>40</roman></inf></formula>Se<formula><inf><roman>60</roman></inf></formula> thin layers</title> ., 1998, 3450, 125.		0
47	Photoresponse of inorganic-organic thin film composites based on chalcogenide glasses. AIP Conference Proceedings, 2018, , .	0.4	0