
Aled O Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2272075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute kidney injury demographics and outcomes: changes following introduction of electronic acute kidney injury alerts—an analysis of a national dataset. Nephrology Dialysis Transplantation, 2021, 36, 1433-1439.	0.7	6
2	Using electronic AKI alerts to define the epidemiology of acute kidney injury in renal transplants. Journal of Nephrology, 2021, 34, 829-838.	2.0	3
3	Derivation of a prediction model for emergency department acute kidney injury. American Journal of Emergency Medicine, 2021, 40, 64-69.	1.6	1
4	Gum Arabic in renal disease (GARDS Study): Clinical evidence of dietary supplementation impact on progression of renal dysfunction. Journal of Functional Foods, 2021, 82, 104515.	3.4	5
5	CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-121. Journal of Biological Chemistry, 2021, 297, 100987.	3.4	13
6	Recurrent acute kidney injury: predictors and impact in a large population-based cohort. Nephrology Dialysis Transplantation, 2020, 35, 1361-1369.	0.7	18
7	Epidemiology of emergency department acute kidney injury. Nephrology, 2020, 25, 457-466.	1.6	12
8	Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. American Journal of Pathology, 2020, 190, 1236-1255.	3.8	11
9	Acute Kidney Injury in Children Based on Electronic Alerts. Journal of Pediatrics, 2020, 220, 14-20.e4.	1.8	14
10	Gum Arabic (<i>Acacia Senegal</i>) Augmented Total Antioxidant Capacity and Reduced C-Reactive Protein among Haemodialysis Patients in Phase II Trial. International Journal of Nephrology, 2020, 2020, 1-7.	1.3	23
11	Structural Characterization and Chain Conformation of Water-Soluble β-Glucan from Wild <i>Cordyceps sinensis</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 12520-12527.	5.2	21
12	Cardiovascular and renal outcomes following percutaneous coronary intervention in a population with renal disease: a case-control study. QJM - Monthly Journal of the Association of Physicians, 2019, 112, 669-674.	0.5	3
13	Acute Kidney Injury, Age, andÂSocioeconomic Deprivation: EvaluationÂof a National Data Set. Kidney International Reports, 2019, 4, 824-832.	0.8	14
14	Risk prediction for acute kidney injury in acute medical admissions in the UK. QJM - Monthly Journal of the Association of Physicians, 2019, 112, 197-205.	0.5	9
15	Adding a new dimension to the weekend effect: an analysis of a national data set of electronic AKI alerts. QJM - Monthly Journal of the Association of Physicians, 2018, 111, 249-255.	0.5	7
16	Utility of electronic AKI alerts in intensive care: A national multicentre cohort study. Journal of Critical Care, 2018, 44, 185-190.	2.2	11
17	Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 2-8.	2.7	14
18	The influence of socioeconomic status on presentation and outcome of acute kidney injury. QJM - Monthly Journal of the Association of Physicians, 2018, 111, 849-857.	0.5	11

#	Article	IF	CITATIONS
19	Understanding Electronic AKI Alerts: Characterization by Definitional Rules. Kidney International Reports, 2017, 2, 342-349.	0.8	13
20	Acute kidney injury electronic alerts in primary care ―findings from a large population cohort. QJM - Monthly Journal of the Association of Physicians, 2017, 110, 577-582.	0.5	17
21	Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis. Food Science and Biotechnology, 2017, 26, 55-62.	2.6	42
22	Seasonal pattern of incidence and outcome of Acute Kidney Injury: A national study of Welsh AKI electronic alerts. International Journal of Clinical Practice, 2017, 71, e13000.	1.7	20
23	The incidence of pediatric acute kidney injury is increased when identified by a change in aÂcreatinine-based electronic alert. Kidney International, 2017, 92, 432-439.	5.2	37
24	Nuclear hyaluronidase 2 drives alternative splicing of <i>CD44</i> pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Science Signaling, 2017, 10, .	3.6	29
25	Community acquired acute kidney injury: findings from a large population cohort. QJM - Monthly Journal of the Association of Physicians, 2017, 110, 741-746.	0.5	22
26	The impact of acute kidney injury in diabetes mellitus. Nephrology, 2016, 21, 506-511.	1.6	16
27	17β-estradiol ameliorates age-associated loss of fibroblast function by attenuating IFN-γ/STAT1-dependent miR-7 upregulation. Aging Cell, 2016, 15, 531-541.	6.7	36
28	Acute Kidney Injury in the Era of the AKI E-Alert. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 2123-2131.	4.5	52
29	Stabilization of Urinary MicroRNAs by Association with Exosomes and Argonaute 2 Protein. Non-coding RNA, 2015, 1, 151-166.	2.6	36
30	Acute kidney injury risk assessment at the hospital front door: what is the best measure of risk?. CKJ: Clinical Kidney Journal, 2015, 8, 673-680.	2.9	24
31	Hyaluronan Regulates Bone Morphogenetic Protein-7-dependent Prevention and Reversal of Myofibroblast Phenotype. Journal of Biological Chemistry, 2015, 290, 11218-11234.	3.4	31
32	Epidemiology and outcome of communityâ€acquired acute kidney injury. Nephrology, 2014, 19, 282-287.	1.6	57
33	How good are we at managing acute kidney injury in hospital?. CKJ: Clinical Kidney Journal, 2014, 7, 144-150.	2.9	22
34	Severe hyperkalaemia: demographics and outcome. CKJ: Clinical Kidney Journal, 2014, 7, 127-133.	2.9	19
35	The long-term impact of eGFR reporting on referral patterns. European Journal of Internal Medicine, 2014, 25, 97-101.	2.2	10
36	Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 71-76.	2.7	19

#	Article	IF	CITATIONS
37	miR-192 Induces G2/M Growth Arrest in Aristolochic Acid Nephropathy. American Journal of Pathology, 2014, 184, 996-1009.	3.8	48
38	Cordyceps sinensis: InÂvitro anti-fibrotic bioactivity of natural andÂcultured preparations. Food Hydrocolloids, 2014, 35, 444-452.	10.7	17
39	Epidemiology and Outcomes in Community-Acquired Versus Hospital-Acquired AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1007-1014.	4.5	227
40	Interleukin-1β Induces Hyaluronan and CD44-Dependent Cell Protrusions That Facilitate Fibroblast-Monocyte Binding. American Journal of Pathology, 2013, 182, 2223-2240.	3.8	26
41	Prevalence of risk factors for foot ulceration in a general haemodialysis population. International Wound Journal, 2013, 10, 683-688.	2.9	19
42	Renal impairment among acute hospital admissions in a rural <scp>E</scp> thiopian hospital. Nephrology, 2013, 18, 92-96.	1.6	23
43	Diabetes and renal disease: who does what?. Clinical Medicine, 2013, 13, 460-464.	1.9	17
44	Pleiotropy of microRNA-192 in the kidney. Biochemical Society Transactions, 2012, 40, 762-767.	3.4	29
45	Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochemical Journal, 2012, 443, 407-416.	3.7	44
46	Analysis of urinary microRNAs in chronic kidney disease. Biochemical Society Transactions, 2012, 40, 875-879.	3.4	38
47	Applying estimated glomerular filtration rate to an ageing population: are we in danger of becoming ageist?. European Journal of Internal Medicine, 2012, 23, 705-710.	2.2	2
48	Post-Transcriptional Regulation of Transforming Growth Factor Beta-1 by MicroRNA-744. PLoS ONE, 2011, 6, e25044.	2.5	63
49	Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydrate Polymers, 2011, 84, 894-899.	10.2	112
50	Impact of chronic kidney disease management in primary care. QJM - Monthly Journal of the Association of Physicians, 2011, 104, 27-34.	0.5	13
51	Hyaluronan Facilitates Transforming Growth Factor-β1-dependent Proliferation via CD44 and Epidermal Growth Factor Receptor Interaction. Journal of Biological Chemistry, 2011, 286, 17618-17630.	3.4	103
52	Loss of MicroRNA-192 Promotes Fibrogenesis in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 438-447.	6.1	319
53	Bone Morphogenetic Protein-7 Inhibits Proximal Tubular Epithelial Cell Smad3 Signaling via Increased SnoN Expression. American Journal of Pathology, 2010, 176, 1139-1147.	3.8	54
54	Aging Fibroblasts Resist Phenotypic Maturation Because of Impaired Hyaluronan-Dependent CD44/Epidermal Growth Factor Receptor Signaling. American Journal of Pathology, 2010, 176, 1215-1228.	3.8	66

#	Article	IF	CITATIONS
55	A Conserved Stem Loop Motif in the 5′Untranslated Region Regulates Transforming Growth Factor-β1 Translation. PLoS ONE, 2010, 5, e12283.	2.5	34
56	Hyaluronan Orchestrates Transforming Growth Factor-β1-dependent Maintenance of Myofibroblast Phenotype. Journal of Biological Chemistry, 2009, 284, 9083-9092.	3.4	119
57	Renal quality outcomes framework and eGFR: impact on secondary care. QJM - Monthly Journal of the Association of Physicians, 2009, 102, 415-423.	0.5	35
58	Acacia(sen) SUPERGUMâ,,¢ (Gum arabic): An evaluation of potential health benefits in human subjects. Food Hydrocolloids, 2009, 23, 2410-2415.	10.7	42
59	Modulation of TGFβ1-Dependent Myofibroblast Differentiation by Hyaluronan. American Journal of Pathology, 2009, 175, 148-160.	3.8	106
60	Age-Related Changes in Pericellular Hyaluronan Organization Leads to Impaired Dermal Fibroblast to Myofibroblast Differentiation. American Journal of Pathology, 2009, 175, 1915-1928.	3.8	80
61	Regulation of PTC phenotype and function by TGF-β1: implications for transdifferentiation. International Journal of Experimental Pathology, 2008, 85, A12-A12.	1.3	0
62	Hyaluronan Facilitates Transforming Growth Factor-β1-mediated Fibroblast Proliferation. Journal of Biological Chemistry, 2008, 283, 6530-6545.	3.4	112
63	Y-box protein-1 controls transforming growth factor-β1 translation in proximal tubular cells. Kidney International, 2008, 73, 724-732.	5.2	42
64	Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. Histology and Histopathology, 2008, 23, 731-9.	0.7	43
65	Polarity of Response to Transforming Growth Factor-β1 in Proximal Tubular Epithelial Cells Is Regulated by β-Catenin. Journal of Biological Chemistry, 2007, 282, 28639-28647.	3.4	13
66	The role of proximal tubular cells in interstitial fibrosis: understanding TGF-beta1. Chang Gung Medical Journal, 2007, 30, 2-6.	0.7	7
67	ERK, p38, and Smad Signaling Pathways Differentially Regulate Transforming Growth Factor-β1 Autoinduction in Proximal Tubular Epithelial Cells. American Journal of Pathology, 2006, 169, 1282-1293.	3.8	69
68	Butyrate modulates TGF-β1 generation and function: Potential renal benefit for Acacia(sen) SUPERGUMâ"¢ (gum arabic)?. Kidney International, 2006, 69, 257-265.	5.2	78
69	Overexpression of Hyaluronan Synthase 2 Alters Hyaluronan Distribution and Function in Proximal Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 1553-1567.	6.1	48
70	Interleukin-6 Regulation of Transforming Growth Factor (TGF)-Î ² Receptor Compartmentalization and Turnover Enhances TGF-Î ² 1 Signaling. Journal of Biological Chemistry, 2005, 280, 12239-12245.	3.4	180
71	The Impact of an Out-Reach Clinic on Referral of Patients with Renal Impairment. Nephron Clinical Practice, 2005, 101, c168-c173.	2.3	5
72	BMP-7 Modulates Hyaluronan-Mediated Proximal Tubular Cell-Monocyte Interaction. Journal of the American Society of Nephrology: JASN, 2004, 15, 1199-1211.	6.1	53

5

#	Article	IF	CITATIONS
73	Hyaluronan Regulates Transforming Growth Factor-β1 Receptor Compartmentalization. Journal of Biological Chemistry, 2004, 279, 25326-25332.	3.4	120
74	Hyaluronan and proximal tubular cell migration. Kidney International, 2004, 65, 823-833.	5.2	34
75	Cardiac dysfunction in the Goto-Kakizaki rat. Basic Research in Cardiology, 2004, 99, 133-141.	5.9	48
76	Renal Proximal Tubular Epithelial Cell Transforming Growth Factor-Î ² 1 Generation and Monocyte Binding. American Journal of Pathology, 2004, 165, 763-773.	3.8	47
77	Hyaluronan Attenuates Transforming Growth Factor-β1-Mediated Signaling in Renal Proximal Tubular Epithelial Cells. American Journal of Pathology, 2004, 164, 1979-1988.	3.8	74
78	The role of renal proximal tubular cells in diabetic nephropathy. Current Diabetes Reports, 2003, 3, 491-496.	4.2	61
79	Hypertension superimposed on type II diabetes in Goto Kakizaki rats induces progressive nephropathy. Kidney International, 2003, 63, 2162-2170.	5.2	73
80	Long-Term Exposure of Proximal Tubular Epithelial Cells to Glucose Induces Transforming Growth Factor-β1 Synthesis via an Autocrine PDGF Loop. American Journal of Pathology, 2003, 163, 2565-2574.	3.8	69
81	TGF-β1–Mediated Inhibition of HK-2 Cell Migration. Journal of the American Society of Nephrology: JASN, 2003, 14, 631-640.	6.1	38
82	TGF-β ₁ -mediated alterations of renal proximal tubular epithelial cell phenotype. American Journal of Physiology - Renal Physiology, 2003, 285, F130-F142.	2.7	79
83	Independent Regulation of Transforming Growth Factor-β1 Transcription and Translation by Glucose and Platelet-Derived Growth Factor. American Journal of Pathology, 2002, 161, 1039-1049.	3.8	63
84	Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histology and Histopathology, 2002, 17, 247-52.	0.7	126
85	Translational Regulation of Renal Proximal Tubular Epithelial Cell Transforming Growth Factor-β1 Generation by Insulin. American Journal of Pathology, 2001, 159, 1905-1915.	3.8	68
86	Association of Prolonged Hyperglycemia With Glomerular Hypertrophy and Renal Basement Membrane Thickening in the Goto Kakizaki Model of Non–Insulin-Dependent Diabetes Mellitus. American Journal of Kidney Diseases, 2001, 37, 400-410.	1.9	81
87	Expression of inter-α-trypsin inhibitor and tumor necrosis factor-stimulated gene 6 in renal proximal tubular epithelial cells. Kidney International, 2001, 60, 126-136.	5.2	40
88	Regulation of renal proximal tubular epithelial cell hyaluronan generation: Implications for diabetic nephropathy. Kidney International, 2001, 59, 1739-1749.	5.2	89
89	Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent. Kidney International, 1999, 55, 160-167.	5.2	47
90	Decreased Degradation of Collagen and Fibronectin following Exposure of Proximal Cells to Glucose. Nephron Experimental Nephrology, 1999, 7, 449-462.	2.2	17

#	Article	IF	CITATIONS
91	Diabetic nephropathy: the modulating influence of glucose on transforming factor beta production. Histology and Histopathology, 1998, 13, 565-74.	0.7	6
92	Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney International, 1997, 52, 973-984.	5.2	69
93	Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells. American Journal of Pathology, 1997, 150, 1101-11.	3.8	42
94	Basic fibroblast growth factor stimulates the release of preformed transforming growth factor beta 1 from human proximal tubular cells in the absence of de novo gene transcription or mRNA translation. Laboratory Investigation, 1997, 76, 591-600.	3.7	12
95	Induction of TGF-β1 synthesis in D-glucose primed human proximal tubular cells by IL-1β and TNFα. Kidney International, 1996, 50, 1546-1554.	5.2	77
96	A new antibody capture enzyme linked immunoassay specific for transforming growth factor beta. International Journal of Biochemistry and Cell Biology, 1995, 27, 207-213.	2.8	9
97	Elevated D-glucose concentrations modulate TGF-beta 1 synthesis by human cultured renal proximal tubular cells. The permissive role of platelet-derived growth factor. American Journal of Pathology, 1995, 147, 362-74.	3.8	97
98	Acute renal failure associated with non-fulminant hepatitis A. Clinical Nephrology, 1993, 39, 156-7.	0.7	15