
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2271924/publications.pdf Version: 2024-02-01

Signature

#	Article	IF	CITATIONS
1	Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry. Genomics, Proteomics and Bioinformatics, 2022, 20, 648-656.	6.9	2
2	Global Quantification of Glutathione S-Transferases in Human Serum Using LC-MS/MS Coupled with Affinity Enrichment. Journal of Proteome Research, 2022, 21, 1311-1320.	3.7	1
3	Proteomic Profiling of Gastric Signet Ring Cell Carcinoma Tissues Reveals Characteristic Changes of the Complement Cascade Pathway. Molecular and Cellular Proteomics, 2021, 20, 100068.	3.8	4
4	The trans-omics landscape of COVID-19. Nature Communications, 2021, 12, 4543.	12.8	75
5	An increase of phosphatidylcholines in follicular fluid implies attenuation of embryo quality on day 3 post-fertilization. BMC Biology, 2021, 19, 200.	3.8	6
6	Prediction and Validation of Mouse Meiosis-Essential Genes Based on Spermatogenesis Proteome Dynamics. Molecular and Cellular Proteomics, 2021, 20, 100014.	3.8	18
7	Progress Identifying and Analyzing the Human Proteome: 2021ÂMetrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2021, 20, 5227-5240.	3.7	30
8	Discovery of Missing Proteins from an Aneuploidy Cell Line Using a Proteogenomic Approach. Journal of Proteome Research, 2021, 20, 5329-5339.	3.7	2
9	Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines. Journal of Proteome Research, 2020, 19, 401-408.	3.7	9
10	Standardization and harmonization of distributed multi-center proteotype analysis supporting precision medicine studies. Nature Communications, 2020, 11, 5248.	12.8	49
11	D283 Med, a Cell Line Derived from Peritoneal Metastatic Medulloblastoma: A Good Choice for Missing Protein Discovery. Journal of Proteome Research, 2020, 19, 4857-4866.	3.7	5
12	Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. Journal of Proteome Research, 2020, 19, 4735-4746.	3.7	38
13	Pathway attenuation of fatty acid betaâ€oxidation in the skeletal muscle of a type 2 diabetic mouse model. Rapid Communications in Mass Spectrometry, 2020, 34, e8869.	1.5	1
14	Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. Rapid Communications in Mass Spectrometry, 2020, 34, e8733.	1.5	10
15	pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching. Journal of Proteome Research, 2019, 18, 3235-3244.	3.7	3
16	Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2019, 18, 4098-4107.	3.7	41
17	Alternative Strategy To Explore Missing Proteins with Low Molecular Weight. Journal of Proteome Research, 2019, 18, 4180-4188.	3.7	7
18	Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naÃ ⁻ ve type 2 diabetics. EBioMedicine, 2019, 47, 373-383.	6.1	101

#	Article	IF	CITATIONS
19	Quantitative proteomics reveals the key molecular events occurring at different cell cycle phases of the in situ blooming dinoflagellate cells. Science of the Total Environment, 2019, 676, 62-71.	8.0	14
20	Rapid evolution of protein diversity by de novo origination in Oryza. Nature Ecology and Evolution, 2019, 3, 679-690.	7.8	121
21	Improvements to the Rice Genome Annotation Through Large-Scale Analysis of RNA-Seq and Proteomics Data Sets. Molecular and Cellular Proteomics, 2019, 18, 86-98.	3.8	22
22	Reagents for Isobaric Labeling Peptides in Quantitative Proteomics. Analytical Chemistry, 2018, 90, 12366-12371.	6.5	33
23	Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. Journal of Proteome Research, 2018, 17, 4042-4050.	3.7	41
24	Improvement of Peptide Separation for Exploring the Missing Proteins Localized on Membranes. Journal of Proteome Research, 2018, 17, 4152-4159.	3.7	12
25	Improved Peptide Retention Time Prediction in Liquid Chromatography through Deep Learning. Analytical Chemistry, 2018, 90, 10881-10888.	6.5	107
26	Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2018, 17, 4031-4041.	3.7	59
27	Lowering Endogenous Cathepsin D Abundance Results in Reactive Oxygen Species Accumulation and Cell Senescence. Molecular and Cellular Proteomics, 2017, 16, 1217-1232.	3.8	13
28	Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals. GigaScience, 2017, 6, 1-12.	6.4	49
29	metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 2017, 18, 183.	2.6	489
30	Digging More Missing Proteins Using an Enrichment Approach with ProteoMiner. Journal of Proteome Research, 2017, 16, 4330-4339.	3.7	26
31	Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. GigaScience, 2017, 6, 1-11.	6.4	162
32	Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nature Communications, 2017, 8, 291.	12.8	423
33	Combination Strategy of Quantitative Proteomics Uncovers the Related Proteins of Colorectal Cancer in the Interstitial Fluid of Colonic Tissue from the AOM-DSS Mouse Model. Methods in Molecular Biology, 2017, 1788, 185-192.	0.9	3
34	Improvement of peptide identification with considering the abundance of mRNA and peptide. BMC Bioinformatics, 2017, 18, 109.	2.6	7
35	A Combinational Strategy upon RNA Sequencing and Peptidomics Unravels a Set of Novel Toxin Peptides in Scorpion Mesobuthus martensii. Toxins, 2016, 8, 286.	3.4	8
36	Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification. Molecular and Cellular Proteomics, 2016, 15, 2819-2828.	3.8	9

#	Article	IF	CITATIONS
37	Drug Resistance in Colorectal Cancer Cell Lines is Partially Associated with Aneuploidy Status in Light of Profiling Gene Expression. Journal of Proteome Research, 2016, 15, 4047-4059.	3.7	14
38	PGA: an R/Bioconductor package for identification of novel peptides using a customized database derived from RNA-Seq. BMC Bioinformatics, 2016, 17, 244.	2.6	48
39	A Comprehensive Investigation toward the Indicative Proteins of Bladder Cancer in Urine: From Surveying Cell Secretomes to Verifying Urine Proteins. Journal of Proteome Research, 2016, 15, 2164-2177.	3.7	19
40	Discovery of potential colorectal cancer serum biomarkers through quantitative proteomics on the colonic tissue interstitial fluids from the AOM–DSS mouse model. Journal of Proteomics, 2016, 132, 31-40.	2.4	28
41	The levels of serine proteases in colon tissue interstitial fluid and serum serve as an indicator of colorectal cancer progression. Oncotarget, 2016, 7, 32592-32606.	1.8	22
42	Rapid Biosynthesis of Stable Isotope-Labeled Peptides from a Reconstituted In Vitro Translation System for Targeted Proteomics. Methods in Enzymology, 2015, 565, 347-366.	1.0	0
43	Biomarker Discovery and Verification of Esophageal Squamous Cell Carcinoma Using Integration of SWATH/MRM. Journal of Proteome Research, 2015, 14, 3793-3803.	3.7	41
44	Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples. Journal of Proteome Research, 2015, 14, 3680-3692.	3.7	15
45	Insights from ENCODE on Missing Proteins: Why β-Defensin Expression Is Scarcely Detected. Journal of Proteome Research, 2015, 14, 3635-3644.	3.7	8
46	Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins. Journal of Proteome Research, 2015, 14, 3583-3594.	3.7	45
47	lQuant: An automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics, 2014, 14, 2280-2285.	2.2	253
48	Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation. Cell, 2014, 156, 1207-1222.	28.9	489
49	Systematic Analyses of the Transcriptome, Translatome, and Proteome Provide a Global View and Potential Strategy for the C-HPP. Journal of Proteome Research, 2014, 13, 38-49.	3.7	60
50	sapFinder: an R/Bioconductor package for detection of variant peptides in shotgun proteomics experiments. Bioinformatics, 2014, 30, 3136-3138.	4.1	25
51	Quantitative Proteomics Reveals the Temperature-Dependent Proteins Encoded by a Series of Cluster Genes in Thermoanaerobacter Tengcongensis. Molecular and Cellular Proteomics, 2013, 12, 2266-2277.	3.8	58
52	Quantitative Analysis of the Human AKR Family Members in Cancer Cell Lines Using the mTRAQ/MRM Approach. Journal of Proteome Research, 2013, 12, 2022-2033.	3.7	23
53	Stress Responsive Proteins Are Actively Regulated during Rice (Oryza sativa) Embryogenesis as Indicated by Quantitative Proteomics Analysis. PLoS ONE, 2013, 8, e74229.	2.5	38
54	Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis, 2013, 34, 128-138.	2.8	64

#	Article	IF	CITATIONS
55	MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. ELife, 2013, 2, e00785.	6.0	282
56	Proteolytic Characteristics of Cathepsin D Related to the Recognition and Cleavage of Its Target Proteins. PLoS ONE, 2013, 8, e65733.	2.5	36
57	A Draft Sequence of the Rice Genome (<i>Oryza sativa</i> L. ssp. <i>indica</i>). Science, 2002, 296, 79-92.	12.6	3,146