Patrick Meraldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2271252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLK1 controls centriole distal appendage formation and centrobin removal via independent pathways. Journal of Cell Science, 2022, 135, .	1.2	3
2	Cell division: The science friction of chromosome attachment. Current Biology, 2022, 32, R744-R746.	1.8	1
3	Forcing dividing cancer cells to die; lowâ€dose drug combinations to prevent spindle pole clustering. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 248-252.	2.2	3
4	WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation. Journal of Cell Biology, 2021, 220, .	2.3	10
5	Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nature Communications, 2019, 10, 3585.	5.8	92
6	Cell polarity–dependent centrosome separation in the C. elegans embryo. Journal of Cell Biology, 2019, 218, 4112-4126.	2.3	6
7	Spindle-Length-Dependent HURP Localization Allows Centrosomes to Control Kinetochore-Fiber Plus-End Dynamics. Current Biology, 2019, 29, 3563-3578.e6.	1.8	29
8	Identification of a Synergistic Multi-Drug Combination Active in Cancer Cells via the Prevention of Spindle Pole Clustering. Cancers, 2019, 11, 1612.	1.7	25
9	Anti-angiogenic effects of crenolanib are mediated by mitotic modulation independently of PDGFR expression. British Journal of Cancer, 2019, 121, 139-149.	2.9	12
10	Bub1—the zombie protein that <scp>CRISPR</scp> cannot kill. EMBO Journal, 2019, 38, .	3.5	16
11	AA344 and AA345 antibodies recognize the microtubule network in human cells by immunofluorescence. Antibody Reports, 2019, 2, e17.	0.0	10
12	Location of Mutation in <i>BRCA2</i> Gene and Survival in Patients with Ovarian Cancer. Clinical Cancer Research, 2018, 24, 326-333.	3.2	40
13	p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. Journal of Cell Biology, 2018, 217, 483-493.	2.3	12
14	Complete microtubule–kinetochore occupancy favours the segregation of merotelic attachments. Nature Communications, 2018, 9, 2042.	5.8	50
15	Mitotic live-cell imaging at different timescales. Methods in Cell Biology, 2018, 145, 1-27.	0.5	8
16	Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Scientific Reports, 2017, 7, 43005.	1.6	97
17	Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results and Problems in Cell Differentiation, 2017, 61, 301-321.	0.2	5
18	The Elephant in the Room: The Role of Microtubules in Cancer. Advances in Experimental Medicine and Biology, 2017, 1002, 93-124.	0.8	48

PATRICK MERALDI

#	Article	IF	CITATIONS
19	Mitotic Spindle Assembly and Genomic Stability in Breast Cancer Require PI3K-C2α Scaffolding Function. Cancer Cell, 2017, 32, 444-459.e7.	7.7	69
20	The Ska complex promotes Aurora B activity to ensure chromosome biorientation. Journal of Cell Biology, 2016, 215, 77-93.	2.3	37
21	Centrosomes in spindle organization and chromosome segregation: a mechanistic view. Chromosome Research, 2016, 24, 19-34.	1.0	48
22	The equatorial position of the metaphase plate ensures symmetric cell divisions. ELife, 2015, 4, .	2.8	19
23	Two Ways to Get Mad at Kinetochores. Developmental Cell, 2015, 35, 535-536.	3.1	0
24	CRL4RBBP7 is required for efficient CENP-A deposition at centromeres. Journal of Cell Science, 2015, 128, 1732-45.	1.2	21
25	Centrosome age regulates kinetochore–microtubule stability and biases chromosome mis-segregation. ELife, 2015, 4, .	2.8	32
26	SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. Journal of Cell Biology, 2014, 204, 1099-1109.	2.3	62
27	The TRAF-interacting protein (TRAIP) is a regulator of the spindle assembly checkpoint. Journal of Cell Science, 2014, 127, 5149-56.	1.2	27
28	Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase. Molecular and Cellular Proteomics, 2014, 13, 1724-1740.	2.5	37
29	Nonautonomous Movement of Chromosomes in Mitosis. Developmental Cell, 2013, 27, 60-71.	3.1	55
30	The UBXN-2/p37/p47 adaptors of CDC-48/p97 regulate mitosis by limiting the centrosomal recruitment of Aurora A. Journal of Cell Biology, 2013, 201, 559-575.	2.3	23
31	Effect of Cell Shape and Dimensionality on Spindle Orientation and Mitotic Timing. PLoS ONE, 2013, 8, e66918.	1.1	16
32	Mitotic spindle (DIS)orientation and DISease: Cause or consequence?. Journal of Cell Biology, 2012, 199, 1025-1035.	2.3	94
33	Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation. Journal of Cell Science, 2012, 125, 906-918.	1.2	44
34	Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. Journal of Cell Biology, 2012, 198, 847-863.	2.3	111
35	CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nature Cell Biology, 2012, 14, 295-303.	4.6	88
36	Keeping kinetochores on track. European Journal of Cell Biology, 2012, 91, 103-106.	1.6	0

PATRICK MERALDI

#	Article	IF	CITATIONS
37	Step-Wise Assembly, Maturation and Dynamic Behavior of the Human CENP-P/O/R/Q/U Kinetochore Sub-Complex. PLoS ONE, 2012, 7, e44717.	1.1	32
38	The CCAN complex: Linking centromere specification to control of kinetochore–microtubule dynamics. Seminars in Cell and Developmental Biology, 2011, 22, 946-952.	2.3	38
39	p31 ^{comet} acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Molecular Biology of the Cell, 2011, 22, 4236-4246.	0.9	51
40	Dynamics of CENP-N kinetochore binding during the cell cycle. Journal of Cell Science, 2011, 124, 3871-3883.	1.2	55
41	The Spindle Assembly Checkpoint: Clock or Domino?. Results and Problems in Cell Differentiation, 2011, 53, 75-91.	0.2	13
42	Mechanisms of aneuploidy and its suppression by tumour suppressor proteins. Swiss Medical Weekly, 2011, 141, w13170.	0.8	9
43	Finding the middle ground: how kinetochores power chromosome congression. Cellular and Molecular Life Sciences, 2010, 67, 2145-2161.	2.4	52
44	Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nature Cell Biology, 2010, 12, 319-329.	4.6	133
45	Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases. Journal of Cell Biology, 2010, 188, 665-679.	2.3	126
46	Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. Journal of Cell Biology, 2009, 184, 365-372.	2.3	120
47	A life outside kinetochores for Bub1 kinases?. Cell Cycle, 2009, 8, 3250-3251.	1.3	2
48	Double-trouble in mitosis caused by von Hippel-Lindau tumor-suppressor protein inactivation. Cell Cycle, 2009, 8, 3619-3620.	1.3	5
49	Bub1 regulates chromosome segregation in a kinetochore-independent manner. Journal of Cell Biology, 2009, 185, 841-858.	2.3	178
50	The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO Journal, 2009, 28, 1374-1374.	3.5	1
51	VHL loss causes spindle misorientation and chromosome instability. Nature Cell Biology, 2009, 11, 994-1001.	4.6	141
52	Analysing Kinetochore Function in Human Cells: Spindle Checkpoint and Chromosome Congression. Methods in Molecular Biology, 2009, 545, 205-220.	0.4	2
53	The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO Journal, 2007, 26, 5033-5047.	3.5	73
54	Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biology, 2006, 7, R23.	13.9	239

PATRICK MERALDI

#	Article	IF	CITATIONS
55	The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO Journal, 2006, 25, 4033-4049.	3.5	70
56	A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO Journal, 2005, 24, 1621-1633.	3.5	192
57	Coordinate Regulation of the Mother Centriole Component Nlp by Nek2 and Plk1 Protein Kinases. Molecular and Cellular Biology, 2005, 25, 1309-1324.	1.1	83
58	Timing and Checkpoints in the Regulation of Mitotic Progression. Developmental Cell, 2004, 7, 45-60.	3.1	434
59	Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Current Opinion in Genetics and Development, 2004, 14, 29-36.	1.5	302
60	Polo-like Kinase 1 Regulates Nlp, a Centrosome Protein Involved in Microtubule Nucleation. Developmental Cell, 2003, 5, 113-125.	3.1	234
61	Human TPX2 is required for targeting Aurora-A kinase to the spindle. Journal of Cell Biology, 2002, 158, 617-623.	2.3	516
62	The centrosome cycle. FEBS Letters, 2002, 521, 9-13.	1.3	131
63	Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO Journal, 2002, 21, 483-492.	3.5	577
64	Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. Journal of Cell Science, 2001, 114, 3749-3757.	1.2	154
65	Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A. Nature Cell Biology, 1999, 1, 88-93.	4.6	431
66	Protein kinases in control of the centrosome cycle. FEBS Letters, 1999, 452, 92-95.	1.3	70
67	A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO Journal, 1998, 17, 470-481.	3.5	370
68	C-Nap1, a Novel Centrosomal Coiled-Coil Protein and Candidate Substrate of the Cell Cycle–regulated Protein Kinase Nek2. Journal of Cell Biology, 1998, 141, 1563-1574.	2.3	398
69	Centrosomes Control Kinetochore-Fiber Plus-End Dynamics Via HURP to Ensure Symmetric Divisions. SSRN Electronic Journal, 0, , .	0.4	0