List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2271108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Derivation of induced pluripotent stem cell lines from New Zealand donors. Journal of the Royal Society of New Zealand, 2022, 52, 54-67.	1.9	5
2	The Impact of Exogenous Insulin Input on Calculating Hepatic Clearance Parameters. Journal of Diabetes Science and Technology, 2022, 16, 945-954.	2.2	4
3	The minor allele of the CREBRF rs373863828 p.R457Q coding variant is associated with reduced levels of myostatin in males: Implications for body composition. Molecular Metabolism, 2022, 59, 101464.	6.5	2
4	β-Cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin-binding protein p120 catenin. Journal of Biological Chemistry, 2022, 298, 102240.	3.4	0
5	Genomic and signalling pathway characterization of the NZM panel of melanoma cell lines: A valuable model for studying the impact of genetic diversity in melanoma. Pigment Cell and Melanoma Research, 2021, 34, 136-143.	3.3	9
6	Efficacy of Providing the PI3K p110α Inhibitor BYL719 (Alpelisib) to Middle-Aged Mice in Their Diet. Biomolecules, 2021, 11, 150.	4.0	6
7	Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer, 2021, 21, 136.	2.6	21
8	Variability in Estimated Modelled Insulin Secretion. Journal of Diabetes Science and Technology, 2021, , 193229682199112.	2.2	2
9	A role for PAK1 mediated phosphorylation of β-catenin Ser552 in the regulation of insulin secretion. Biochemical Journal, 2021, 478, 1605-1615.	3.7	6
10	Glucose regulates expression of pro-inflammatory genes, <i>IL-1β</i> and <i>IL-12</i> , through a mechanism involving hexosamine biosynthesis pathway-dependent regulation of α-E catenin. Bioscience Reports, 2021, 41, .	2.4	7
11	βâ€Catenin is required for optimal exercise―and contractionâ€stimulated skeletal muscle glucose uptake. Journal of Physiology, 2021, 599, 3897-3912.	2.9	12
12	The CREBRF diabetes-protective rs373863828-A allele is associated with enhanced early insulin release in men of MÄori and Pacific ancestry. Diabetologia, 2021, 64, 2779-2789.	6.3	7
13	The CSF1 receptor inhibitor pexidartinib (PLX3397) reduces tissue macrophage levels without affecting glucose homeostasis in mice. International Journal of Obesity, 2020, 44, 245-253.	3.4	39
14	The MÄori and Pacific specific CREBRF variant and adult height. International Journal of Obesity, 2020, 44, 748-752.	3.4	15
15	β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding. Molecular Metabolism, 2020, 42, 101091.	6.5	26
16	Cetuximab produced from a goat mammary gland expression system is equally efficacious as innovator cetuximab in animal cancer models. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00533.	4.4	2
17	The Potential of Anti-Diabetic RÄkau RongoÄ•(MÄori Herbal Medicine) to Treat Type 2 Diabetes Mellitus (T2DM) Mate Huka: A Review. Frontiers in Pharmacology, 2020, 11, 935.	3.5	6
18	α-catenin isoforms are regulated by glucose and involved in regulating insulin secretion in rat clonal β-cell models. Biochemical Journal, 2020, 477, 763-772.	3.7	8

#	Article	IF	CITATIONS
19	Prolonged treatment with a PI3K p110α inhibitor causes sex- and tissue-dependent changes in antioxidant content, but does not affect mitochondrial function. Bioscience Reports, 2020, 40, .	2.4	6
20	Evolution of Molecular Targets in Melanoma Treatment. Current Pharmaceutical Design, 2020, 26, 396-414.	1.9	10
21	For Better or Worse: The Potential for Dose Limiting the On-Target Toxicity of PI 3-Kinase Inhibitors. Biomolecules, 2019, 9, 402.	4.0	16
22	Synthesis and Evaluation of Imidazo[1,2â€ <i>a</i>]pyridine Analogues of the ZSTK474 Class of Phosphatidylinositol 3â€Kinase Inhibitors. Chemistry - an Asian Journal, 2019, 14, 1249-1261.	3.3	9
23	Orthogonal assays for the identification of inhibitors of the single-stranded nucleic acid binding protein YB-1. Acta Pharmaceutica Sinica B, 2019, 9, 997-1007.	12.0	6
24	Synthesis and biological evaluation of solubilized sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorganic and Medicinal Chemistry, 2019, 27, 1529-1545.	3.0	12
25	The role of adherens junction proteins in the regulation of insulin secretion. Bioscience Reports, 2018, 38, .	2.4	29
26	Î ² -catenin is important for the development of an insulin responsive pool of GLUT4 glucose transporters in 3T3-L1 adipocytes. Experimental Cell Research, 2018, 366, 49-54.	2.6	17
27	Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	47
28	Re: "Widespread prevalence of a CREBRF variant among MÄori and Pacific children is associated with weight and height in early childhood― International Journal of Obesity, 2018, 42, 1389-1391.	3.4	5
29	Feeding and <scp>glucagonâ€like peptide</scp> â€l receptor activation stabilise βâ€catenin in specific hypothalamic nuclei in male rats. Journal of Neuroendocrinology, 2018, 30, e12607.	2.6	4
30	Discordant association of the CREBRF rs373863828 A allele with increased BMI and protection from type 2 diabetes in MÄori and Pacific (Polynesian) people living in Aotearoa/New Zealand. Diabetologia, 2018, 61, 1603-1613.	6.3	61
31	Niclosamide reduces glucagon sensitivity via hepatic PKA inhibition in obese mice: Implications for glucose metabolism improvements in type 2 diabetes. Scientific Reports, 2017, 7, 40159.	3.3	23
32	Novel pyrazolo[1,5- a]pyridines with improved aqueous solubility as p110α-selective PI3 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 187-190.	2.2	9
33	Combining properties of different classes of Pl3K \hat{l} ± inhibitors to understand the molecular features that confer selectivity. Biochemical Journal, 2017, 474, 2261-2276.	3.7	6
34	Synthesis and biological evaluation of sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorganic and Medicinal Chemistry, 2017, 25, 5859-5874.	3.0	14
35	Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3Kî±, in comparison to established pan PI3K inhibitors. Oncotarget, 2017, 8, 47725-47740.	1.8	11
36	Niclosamide blocks glucagon phosphorylation of Ser552 on β-catenin in primary rat hepatocytes via PKA signalling. Biochemical Journal, 2016, 473, 1247-1255.	3.7	19

#	Article	IF	CITATIONS
37	A Critical Role for Î ² -Catenin in Modulating Levels of Insulin Secretion from Î ² -Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization. Journal of Biological Chemistry, 2016, 291, 25888-25900.	3.4	42
38	Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. International Journal of Oncology, 2016, 49, 207-216.	3.3	13
39	Inhibitors of pan-PI3K Signaling Synergize with BRAF or MEK Inhibitors to Prevent BRAF-Mutant Melanoma Cell Growth. Frontiers in Oncology, 2015, 5, 135.	2.8	52
40	Glucagon phosphorylates serine 552 of î² -catenin leading to increased expression of cyclin D1 and c-Myc in the isolated rat liver. Archives of Physiology and Biochemistry, 2015, 121, 88-96.	2.1	13
41	Exploring the isoform selectivity of TGX-221 related pyrido[1,2-a]pyrimidinone-based Class IA PI 3-kinase inhibitors: Synthesis, biological evaluation and molecular modelling. Bioorganic and Medicinal Chemistry, 2015, 23, 3796-3808.	3.0	9
42	Novel pyrazolo[1,5-a]pyridines as PI3K inhibitors: variation of the central linker group. MedChemComm, 2014, 5, 41-46.	3.4	12
43	Structure, function and inhibition of the phosphoinositide 3-kinase p110α enzyme. Biochemical Society Transactions, 2014, 42, 120-124.	3.4	11
44	Targeting Class IA PI3K Isoforms Selectively Impairs Cell Growth, Survival, and Migration in Glioblastoma. PLoS ONE, 2014, 9, e94132.	2.5	33
45	Extended treatment with selective phosphatidylinositol 3â€kinase and m <scp>TOR</scp> inhibitors has effects on metabolism, growth, behaviour and bone strength. FEBS Journal, 2013, 280, 5337-5349.	4.7	22
46	Enzyme activity effects of N-terminal His-tag attached to catalytic sub-unit of phosphoinositide-3-kinase. Bioscience Reports, 2013, 33, .	2.4	20
47	Identification of a pathway by which glucose regulates β-catenin signalling via the cAMP/protein kinase A pathway in β-cell models. Biochemical Journal, 2013, 449, 803-811.	3.7	25
48	Oncogenic Mutations of p110α Isoform of PI 3-Kinase Upregulate Its Protein Kinase Activity. PLoS ONE, 2013, 8, e71337.	2.5	14
49	lκB kinase β (IKKβ) does not mediate feedback inhibition of the insulin signalling cascade. Biochemical Journal, 2012, 442, 723-732.	3.7	5
50	Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism <i>in vivo</i> . Biochemical Journal, 2012, 442, 161-169.	3.7	42
51	Beta-Testing of PI3-Kinase Inhibitors: Is Beta Better?. Cancer Discovery, 2012, 2, 393-394.	9.4	3
52	A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochemical Journal, 2011, 438, 53-62.	3.7	137
53	Phosphoinositide 3-Kinase (PI3K(p110α)) Directly Regulates Key Components of the Z-disc and Cardiac Structure*. Journal of Biological Chemistry, 2011, 286, 30837-30846.	3.4	32
54	NVP-BEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. Journal of Bone and Mineral Research, 2010, 25, 2126-2137.	2.8	54

#	Article	IF	CITATIONS
55	Evidence for a role for the p110-α isoform of PI3K in skeletal function. Biochemical and Biophysical Research Communications, 2010, 391, 564-569.	2.1	11
56	Anti-Leukemic Activity of PIK-75, a PI3-Kinase p110α Selective Inhibitor, In Acute Myeloid Leukemia. Blood, 2010, 116, 659-659.	1.4	0
57	Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation. Biochemical and Biophysical Research Communications, 2009, 379, 830-834.	2.1	15
58	Functional differences between two classes of oncogenic mutation in the PIK3CA gene. Biochemical and Biophysical Research Communications, 2009, 381, 577-581.	2.1	50
59	The Synthesis of Phosphopeptides Using Microwave-assisted Solid Phase Peptide Synthesis. International Journal of Peptide Research and Therapeutics, 2008, 14, 387-392.	1.9	29
60	Glucose induces an autocrine activation of the Wnt/β-catenin pathway in macrophage cell lines. Biochemical Journal, 2008, 416, 211-218.	3.7	74
61	The Role of Phosphoinositide 3-Kinase C2α in Insulin Signaling. Journal of Biological Chemistry, 2007, 282, 28226-28236.	3.4	136
62	Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochemical Journal, 2007, 404, 449-458.	3.7	188
63	Pl 3-kinase p110β: a new target for antithrombotic therapy. Nature Medicine, 2005, 11, 507-514.	30.7	555
64	Letter from… New Zealand: Doing biochemistry down under. Biochemist, 2005, 27, 43-44.	0.5	0
65	Regulation of Phosphoinositide 3-Kinase by Its Intrinsic Serine Kinase Activity In Vivo. Molecular and Cellular Biology, 2004, 24, 966-975.	2.3	60
66	elF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase. Biochemical and Biophysical Research Communications, 2004, 319, 541-549.	2.1	16
67	Secrets of insulin and IGF-1 regulation of insulin secretion revealed. Biochemical Journal, 2004, 377, e1-e2.	3.7	7
68	Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110α and p110β catalytic subunits of class-la phosphoinositide 3-kinases. Biochemical Journal, 2000, 350, 353.	3.7	20
69	Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110 \hat{l} ± and p110 \hat{l} ² catalytic subunits of class-la phosphoinositide 3-kinases. Biochemical Journal, 2000, 350, 353-359.	3.7	60
70	Glucose Transporters and Insulin Action — Implications for Insulin Resistance and Diabetes Mellitus. New England Journal of Medicine, 1999, 341, 248-257.	27.0	1,123
71	Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochemical journal, 1999, 344, 427-431.	3.7	795
72	Insulin-like Growth Factors Require Phosphatidylinositol 3-Kinase to Signal Myogenesis: Dominant Negative p85 Expression Blocks Differentiation of L6E9 Muscle Cells. Molecular Endocrinology, 1998, 12, 66-77.	3.7	98

PETER R SHEPHERD

#	Article	IF	CITATIONS
73	Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochemical Journal, 1998, 333, 471-490.	3.7	924
74	Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: Implications for nutrient partitioning. Proceedings of the Nutrition Society, 1996, 55, 191-199.	1.0	29
75	Phorbol esters stimulate phosphatidylinositol 3,4,5-trisphosphate production in 3T3-L1 adipocytes: implications for stimulation of glucose transport. Biochemical Journal, 1996, 318, 203-205.	3.7	33
76	Effect of phorbol esters on phosphatidylinositol 3-kinase activity in adipocytes. Biochemical Society Transactions, 1995, 23, 183S-183S.	3.4	4
77	Involvement of PI 3-kinase in stimulation of glucose transport and recruitment of transferrin receptors in 3T3-L1 adipocytes. Biochemical Society Transactions, 1995, 23, 201S-201S.	3.4	8
78	Insulin activates Glycogen Synthase by a novel PI 3-kinase/p70s6k dependent pathway in 3T3-L1 adipocytes. Biochemical Society Transactions, 1995, 23, 202S-202S.	3.4	8